Previous |  Up |  Next

Article

Title: Interpolace — vývoj formulace problému a jeho řešení (Czech)
Title: Interpolation – development of formulation of the problem and its solution (English)
Author: Kobza, Jiří
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 44
Issue: 4
Year: 1999
Pages: 273-294
.
Category: math
.
MSC: 41-01
MSC: 41A05
MSC: 65D05
idZBL: Zbl 1055.41500
.
Date available: 2010-12-11T17:37:38Z
Last updated: 2012-08-25
Stable URL: http://hdl.handle.net/10338.dmlcz/141006
.
Reference: [1] Atteia, M.: Hilbertian Kernels and Spline Functions.North Holland, 1992. Zbl 0767.41015, MR 1205348
Reference: [2] Berezin, I. S., Židkov, N. P.: Metody vyčislenij I, II.Moskva 1959, 1966.
Reference: [3] Brezinski, C.: Handbook of Numerical Analysis, III.North Holland, 1994. MR 1307407
Reference: [4] Bojanov, B. D., Hakopian, H. A., Sahakian, A. A.: Spline Functions and Multivariate Interpolations.Kluwer, Dordrecht 1993. Zbl 0772.41011
Reference: [5] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.North Holland, 1978. Zbl 0383.65058, MR 0520174
Reference: [6] Ciarlet, P. G., Raviart, P. A.: General Lagrange and Hermite Interpolation in $R^n$ with Applications to FEM.Arch. Rational Mech. Anal. 46 (1972), 177–199. Zbl 0243.41004, MR 0336957
Reference: [7] Ciarlet, P. G., Wagschal, C.: Multipoint Taylor Formulas.Numer. Math. 17 (1971), 84–100. Zbl 0199.50104, MR 0287666
Reference: [8] De Boor, C.: A Practical Guide to Splines.Springer Verlag, 1978. Zbl 0406.41003, MR 0507062
Reference: [9] De Boor, C., Höllig, K., Riemenschneider, S.: Box Splines.Springer Verlag, 1993. MR 1243635
Reference: [10] Drs, L.: Plochy ve výpočetní technice.SNTL, Praha 1984.
Reference: [11] Farin, G.: Curves and Surfaces for CAGD.Acad. Press, 1990. MR 1058011
Reference: [12] Faux, I. D., Pratt, M. J.: Computational Geometry.E. Horwood, 1979. Zbl 0395.51001
Reference: [13] Gelfond, A. O.: Isčislenije koněčnych raznostěj.Nauka, Moskva 1967. MR 0220693
Reference: [14] Chui, Ch.: Multivariate Splines.SIAM, Phil. 1988. Zbl 0687.41018, MR 1033490
Reference: [15] Chung, K. C., Yao, T. H.: On lattices admitting unique Lagrange interpolation.SIAM J. Numer. Anal. 14 (1977), 735–743. MR 0445158
Reference: [16] Kobza, J.: Splajny.Vydavatelství UP, Olomouc 1993.
Reference: [17] Kobza, J.: Computing local parameters of biquartic interpolatory splines.J. Comput. Appl. Math. 63 (1995), 229–236. Zbl 0859.65010, MR 1365563
Reference: [18] Kobza, J.: Quadratic and quartic splines in MATLAB.Folia Fac. Sci. UM Brunensis, Math. 5 (1997), 47–65. Zbl 0915.65008, MR 1630855
Reference: [19] Lorentz, R. A.: Multivariate Birkhoff Interpolation.Springer Verlag, 1992. Zbl 0760.41002, MR 1222648
Reference: [20] Lorentz, G. G., Jetter, K., Riemenschneider, S.: Birkhoff Interpolation.Springer, 1983. Zbl 0522.41001, MR 0680938
Reference: [21] Nikolaides, R. A.: On a class of finite elements generated by Lagrange interpolation.SIAM J. Numer. Anal. 9 (1972), 435–445. MR 0317511
Reference: [22] Sauer, T., Xu, Y.: On multivariate Lagrange interpolation.Math. Comp. 64 (1995), 1147–1170. Zbl 0823.41002, MR 1297477
Reference: [23] Schumaker, L.: Spline Functions. Basic Theory.Wiley, 1981. Zbl 0449.41004, MR 0606200
Reference: [24] Vinogradov, I. M.: Matematičeskaja enciklopedija I–V.Moskva 1982.
Reference: [25] Walsh, J. H.: Interpolation and Approximation by Rational Functions in the Complex Domain.AMS Colloquium Publications, 1960. Zbl 0106.28104, MR 0218587
.

Files

Files Size Format View
PokrokyMFA_44-1999-4_2.pdf 361.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo