Previous |  Up |  Next

Article

Title: Symetrie: Ano či ne? (Czech)
Title: Symmetry: Yes or no? (English)
Author: Kawohl, Bernd
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 48
Issue: 4
Year: 2003
Pages: 265-276
.
Category: math
.
MSC: 00A69
MSC: 35J65
idZBL: Zbl 1247.00043
Note: From The Mathematical Intelligencer 20 (1996), No. 2, 16–22, translated by O. John. (English)
Note: Z The Mathematical Intelligencer 20 (1996), č. 2, 16–22, přeložil O. John. (Czech)
.
Date available: 2010-12-11T20:06:15Z
Last updated: 2015-11-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141187
.
Reference: [1] Alikakos, N. D., Bates, P. W.: On the singular limit in a phase field model of phase transitions.Analyse nonlinéaire, Ann. Inst. Henri Poincaré 5 (1988), 141–178. Zbl 0696.35060, MR 0954469
Reference: [2] Barles, G., Diaz, G., Diaz, J. I.: Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a nonlipschitz nonlinearity.Comm PDE 17 (1992), 1037–1050. MR 1177305, 10.1080/03605309208820876
Reference: [3] Brèzis, H., Nirenberg, L.: Positive solutions of nonlinear equations involving critical Sobolev components.Commun. Pure Appl. Math. 36 (1983), 437–477. MR 0709644, 10.1002/cpa.3160360405
Reference: [4] Brock, F.: Continuous polarization and symmetry of solutions of variational problems with potentials.In: Calculus of Variations, Applications and Computations, Pont-à-Mousson 1994. Pitman Res. Notes in Math. 326 (1995), 25–35. Zbl 0840.49006, MR 1419331
Reference: [5] Brock, F.: Continuous rearrangement and symmetry of solutions of elliptic problems.Proc. Indian. Acad. Sci. Math. Sci. 110 (2000), 157–204. Zbl 0965.49002, MR 1758811, 10.1007/BF02829490
Reference: [6] Brock, F., Ferone, V., Kawohl, B.: A symmetry problem in the calculus of variations.Calculus of Variations and PDE 4 (1996), 593–599. Zbl 0856.49018, MR 1416001, 10.1007/BF01261764
Reference: [7] Brock, F., Solynin, A.: An approach to symmetrization via polarization.Trans. Amer. Math. Soc. 352 (2000), 1759–1796. Zbl 0965.49001, MR 1695019, 10.1090/S0002-9947-99-02558-1
Reference: [8] Buttazzo, G., Ferone, V., Kawohl, B.: Minimum problems over sets of concave functions and related questions.Mathematische Nachrichten 173 (1995), 71–89. Zbl 0835.49001, MR 1336954, 10.1002/mana.19951730106
Reference: [9] Caffarelli, L., Garofalo, N., Segala, F.: A gradient bound for entire solutions of quasilinear equations and its consequences.Commun. Pure Appl. Math. 47 (1994), 1457–1473. MR 1296785, 10.1002/cpa.3160471103
Reference: [10] Coffmann, C. V.: A nonlinear boundary value problem with many positive solutions.J. Differ. Equations 54 (1984), 429–437. 10.1016/0022-0396(84)90153-0
Reference: [11] Esteban, M.: Nonsymmetric ground states of symmetric variational problems.Commun. Pure Appl. Math. 44 (1991), 259–274. Zbl 0826.49002, MR 1085830, 10.1002/cpa.3160440205
Reference: [12] Gidas, B., Ni, W. M., Nirenberg, L.: Symmetry and related properties via the maximum principle.Comm. Math. Phys. 68 (1979), 209–243. Zbl 0425.35020, MR 0544879, 10.1007/BF01221125
Reference: [13] Gerdes, K., Schwab, C.: Hierarchic models of Helmholtz problems on thin domains.Math. Models & Methods Appl. Sci., to appear. Zbl 0957.74026, MR 1611995
Reference: [14] Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE.Springer Lecture Notes in Mathematics 1150 (1985). Zbl 0593.35002, MR 0810619
Reference: [15] Kawohl, B., Sweers, G.: Remarks on eigenvalues and eigenfunctions of a special elliptic systems.J. Appl. Math. Phys. (ZAMP) 38 (1987), 730–740. MR 0917475, 10.1007/BF00948293
Reference: [16] Kawohl, B.: A conjectured heat flow problem, Solution.SIAM Review 37 (1995), 105–106.
Reference: [17] Kawohl, B.: Instability criteria for solutions of second order elliptic quasilinear differential equations.In: Partial differential equations and applications. Eds. P. Marcellini, G. Talenti, E. Vesentini. Marcel Dekker, Lecture Notes in Pure and Applied Math. 177 (1996), 201–207. Zbl 0854.35012, MR 1371592
Reference: [18] Kawohl, B.: A short note on hot spots.Zeitschr. Angew. Math. Mech, Suppl. 2, 76 (1996), 569–570. Zbl 0900.35159
Reference: [19] Kawohl, B.: The opaque square and the opaque circle.In: General Inequalities VII, Int. Ser. Numer. Math. 123 (1997), 339–346. Zbl 0907.68135, MR 1457290
Reference: [20] Klamkin, M. S.: A conjectured heat flow problem, Problem.SIAM Review 36 (1994), 107. 10.1137/1036007
Reference: [21] Littlewood, J. E.: A Mathematician’s Miscellany.Methuen & Co. Ltd., London 1953. Zbl 0051.00101
Reference: [22] Lopez, O.: Radial and nonradial minimizers for some radially symmetric functionals.Electronic Journal of Differential equations 1996 (3), 1–14. http://ejde.math.swt.edu
Reference: [23] Rademacher, H., Toeplitz, O.: Von Zahlen und Figuren.Springer, Berlin 1930. Anglický překlad: The enjoyment of mathematics, Princeton, Univ. Press, Princeton 1994.
Reference: [24] Serrin, J.: A symmetry problem in potential theory.Arch. Ration. Mech. Anal. 43 (1971), 304–318. Zbl 0222.31007, MR 0333220, 10.1007/BF00250468
Reference: [25] Weinberger, H.: Remark on the preceding paper of Serrin.Arch. Ration. Mech. Anal. 43 (1971), 319–320. Zbl 0222.31008, MR 0333221, 10.1007/BF00250469
Reference: [26] Renardy, M., Rogers, R. C.: An Introduction to Partial Differential Equations.Springer-Verlag 1992. MR 2028503
.

Files

Files Size Format View
PokrokyMFA_48-2003-4_1.pdf 472.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo