Previous |  Up |  Next

Article

Title: Třicet let od objevu superkonvergence metody konečných prvků (Czech)
Title: Thirty years from the discovery of superconvergence of the finite elements method (English)
Author: Brandts, Jan
Author: Křížek, Michal
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 48
Issue: 4
Year: 2003
Pages: 288-293
.
Category: math
.
MSC: 65-xx
.
Date available: 2010-12-11T20:07:54Z
Last updated: 2012-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/141190
.
Reference: [1] Babuška, I., Práger, M., Vitásek, E.: Numerical processes in differential equations.John Wiley & Sons, New York 1966. MR 0223101
Reference: [2] Bakker, M.: A note on $C^0$ Galerkin methods for two-point boundary problem.Numer. Math. 38 (1981/82), 447–453. MR 0654109
Reference: [3] Blum, H., Lin, Q., Rannacher, R.: Asymptotic error expansion and Richardson extrapolation for linear finite elements.Numer. Math. 49 (1986), 11–38. Zbl 0594.65082, MR 0847015
Reference: [4] Brandts, J., Křížek, M.: History and future of superconvergence in three-dimensional finite element methods.Proc. Conf. Finite Element Methods: Three-dimensional Problems, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 15, Gakkōtosho, Tokyo 2001, 22–33. MR 1896264
Reference: [5] Douglas, J., Dupont, T.: Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary value problems.Topics in Numer. Anal. II, Acad. Press 1973, 89–113. MR 0366044
Reference: [6] Chen, C. M., Huang, Y. Q.: High accuracy theory of finite element methods.Hunan Science and Technology Press, Changsha 1995.
Reference: [7] Hlaváček, I., Chleboun, J.: A recovered gradient method applied to smooth optimal shape problems.Appl. Math. 41 (1996), 281–297. MR 1395687
Reference: [8] Křížek, M.: Padesát let metody konečných prvků.PMFA 37 (1992), 129–140.
Reference: [9] Křížek, M., Neittaanmäki, P.: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175–198. MR 0900263
Reference: [10] Křížek, M., Neittaanmäki, P., Stenberg, R.: Finite Element Methods: Superconvergence, Postprocessing, and A Posteriori Estimates.LN in Pure and Appl. Math., vol. 196, Marcel Dekker, New York 1998. MR 1602809
Reference: [11] Lesaint, P., Zlámal, M.: Superconvergence of the gradient of finite element solutions.RAIRO Anal. Numér. 13 (1979), 139–166. MR 0533879
Reference: [12] Oganesjan, L. A., Ruchovec, L. A.: An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary.Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102–1120. MR 0295599
Reference: [13] Taylor, A. E.: Úvod do funkcionální analýzy.Academia, Praha 1973.
Reference: [14] Wahlbin, L.: Superconvergence in Galerkin finite element methods.LN in Math., vol. 1605, Springer, Berlin 1995. MR 1439050
Reference: [15] Zlámal, M.: On the finite element method.Numer. Math. 12 (1968), 394–409.
Reference: [16] Zlámal, M.: Superconvergence and reduced integration in the finite element method.Math. Comp. 32 (1978), 663–685. MR 0495027
.

Files

Files Size Format View
PokrokyMFA_48-2003-4_3.pdf 267.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo