Previous |  Up |  Next

Article

Title: Systémy algebro-diferenciálních rovnic (Czech)
Title: Systems of differential-algebraic equations (English)
Author: Simerská, Carmen
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 50
Issue: 3
Year: 2005
Pages: 182-192
.
Category: math
.
Keyword: constrained differential equation
Keyword: numerical method
Keyword: systems of differential-algebraic equations
MSC: 34A09
MSC: 65L80
idZBL: Zbl 1265.65148
.
Date available: 2010-12-11T21:03:50Z
Last updated: 2015-11-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141270
.
Reference: [1] Silverman, L. M.: Inversion of multivariable systems.IEEE Trans. Aut. Control, AC-14 (1969), 270–276. MR 0267927, 10.1109/TAC.1969.1099169
Reference: [2] Luenberger, D. G.: Dynamic equations in descriptor form.IEEE Trans. Aut. Control, AC-22 (1977), 312–321. Zbl 0354.93007, MR 0479482, 10.1109/TAC.1977.1101502
Reference: [3] Gear, C. W.: The simultaneous numerical solution of differential-algebraic equations.IEEE Trans. Circuit Theory, CT-18 (1971), 89–95. 10.1109/TCT.1971.1083221
Reference: [4] Gear, C. W., Petzold, L. R.: ODE methods for the solution of differential/algebraic systems.SIAM J. Numer. Anal. 21 (1984), 716–728. Zbl 0557.65053, MR 0749366, 10.1137/0721048
Reference: [5] Lötstedt, P., Petzold, L.: Numerical solution of nonlinear differential equations with algebraic constraints I: Convergence results for backward differentiation formulas.Math. Comp. 46 (1986), 491–516. MR 0829621, 10.2307/2007989
Reference: [6] Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods.Springer-Verlag, Berlin 1989. Zbl 0683.65050, MR 1027594
Reference: [7] Hairer, E., Lubich, C.: Extrapolation at stiff differential equations.Numer. Math. 52 (1988), 377–400. Zbl 0643.65034, MR 0932706, 10.1007/BF01462235
Reference: [8] Griepentrog, E., Märtz, R.: Differential-Algebraic Equations and Their Numerical Treatment.Teubner, Leipzig 1986. MR 0877350
Reference: [9] Märtz, R.: On initial value problems in differential-algebraic equations and their numerical treatment.Computing 35 (1985), 13–37. MR 0809676, 10.1007/BF02240144
Reference: [10] Hindmarsh, A. C.: LSODE and LSODI, two new initial value ordinary differential equation solvers.ACM-SIGNUM Newsletters 15 (1980), 10–11. 10.1145/1218052.1218054
Reference: [11] Petzold, L. R.: A description of DASSL: a differential-algebraic system solver.In: Scientific Computing, eds. Stepleman et al., North-Holland, Amsterdam 1983, 65–68. MR 0751605
Reference: [12] Brenan, K. E., Campbell, S. L., Petzold, L. R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations.North-Holland, Amsterdam 1989. Zbl 0699.65057, MR 1101809
Reference: [13] Gear, C. W.: Differential-algebraic equations, indices, and integral algebraic equations.SIAM J. Numer. Anal. 27 (1990), 1527–1534. Zbl 0732.65061, MR 1080336, 10.1137/0727089
Reference: [14] Gear, C. W.: Numerical Initial Value Problems in Ordinary Differential Equations.Prentice-Hall, Englewood Cliffs, NJ 1971. MR 0315898
Reference: [15] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems.Springer-Verlag, Berlin 1991. Zbl 0729.65051, MR 1111480
Reference: [16] Hindmarsh, A., Taylor, A.: User Documentation for IDA: A Differential-Algebraic Equation Solver for Sequential and Parallel Computers.Lawrence Livermore National Laboratory report, UCRL-MA-136910, December 1999.
Reference: [17] Reisig, G., Martinson, W. S., Barton, P. I.: Differential-algebraic equations of index $1$ may have an arbitrary high structural index.SIAM J. Scientific Computing (2000), 1987–1990. MR 1762026
Reference: [18] Rabier, P. J., Rheinboldt, W. C.: Theoretical and numerical analysis of differentialālgebraic equations.Handbook of Numerical Analysis VIII, Elsevier Publ., North Holland 2002. MR 1893418
.

Files

Files Size Format View
PokrokyMFA_50-2005-3_2.pdf 268.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo