Previous |  Up |  Next

Article

Title: On the importance of solid deformations in convection-dominated liquid/solid phase change of pure materials (English)
Author: Mansutti, Daniela
Author: Bucchignani, Edoardo
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 1
Year: 2011
Pages: 117-136
Summary lang: English
.
Category: math
.
Summary: We analyse the effect of the mechanical response of the solid phase during liquid/solid phase change by numerical simulation of a benchmark test based on the well-known and debated experiment of melting of a pure gallium slab counducted by Gau & Viskanta in 1986. The adopted mathematical model includes the description of the melt flow and of the solid phase deformations. Surprisingly the conclusion reached is that, even in this case of pure material, the contribution of the solid phase to the balance of the momentum of the system influences significantly the numerical solution and is necessary in order to get a better match with the experimental observations. Here an up-to-date list of the most meaningful mathematical models and numerical simulations of this test is discussed and the need is shown of an accurate revision of the numerical simulations of melting/solidification processes of pure materials (e.g. artificial crystal growth) produced in the last thirty years and not accounting for the solid phase mechanics. (English)
Keyword: liquid/solid phase change
Keyword: deformation
Keyword: convection
Keyword: numerical simulation
Keyword: finite differences
MSC: 35Q35
MSC: 35Q99
MSC: 35R37
MSC: 74S20
MSC: 76M20
MSC: 78M20
MSC: 80A22
idZBL: Zbl 1224.80020
idMR: MR2807429
DOI: 10.1007/s10492-011-0012-5
.
Date available: 2011-01-03T14:57:04Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141409
.
Reference: [1] Apostol, T. M.: Calculus. Vol. II: Multi-variable calculus and linear algebra, with applications to differential equations and probability. 2nd ed.Blaisdell Publishing Company Waltham (1969). Zbl 0185.11402, MR 0248290
Reference: [2] Bailey, C., Chow, P., Cross, M., Freyer, Y., Pericleous, K.: Multiphysics modelling of the metals casting process.Proc. R. Soc. Lond. A. 452 (1996), 459-486.
Reference: [3] Baldoni, F.: Thermomechanics of Solidification.Pittsburgh University Press Pittsburgh (1997). Zbl 0945.74521
Reference: [4] Bansch, E., Smith, A.: Simulation of dendritic crystal growth in thermal convection.Interfaces and Free Boundaries 2 (2000), 95-115. MR 1759501, 10.4171/IFB/14
Reference: [5] O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy, D. Gobin, M. Lacroix, P. Le Quere, M. Medale, J. Mercinger, H. Sadat, G. Vieira: Melting driven by natural convection. A comparison exercise: first results.Int. J. Therm. Sci. 38 (1999), 5-26. 10.1016/S0035-3159(99)80013-0
Reference: [6] Brent, A. D., Volle, V. R., Reid, K. J.: Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal.Numer. Heat Transfer 13 (1988), 297-318. 10.1080/10407788808913615
Reference: [7] Cerimele, M. M., Mansutti, D., Pistella, F.: A front-fixing method for flows in liquid/solid phase change with a benchmark test.CD-Rom Proceedings of ECCOMAS 2000, Barcelona, September 11-14, 2000.
Reference: [8] Chalmers, B.: Principles of Solidification.J. Wiley & Sons New York (1964).
Reference: [9] Chen, P. Y. P., Timchenko, V., Leonardi, E., Davis, G. de Vahl, III, H. C. de Groh: A numerical study of directional solidification and melting in microgravity.Proceedings of the ASME, Heat Transfer Division Vol. 3 (1998), 75-83.
Reference: [10] Chiesa, F. M., Guthie, R. I. L.: Natural convection heat transfer rate during the solidification and melting of metals and alloy systems.J. Heat Transfer 99 (1977), 520-526.
Reference: [11] Costanza, G., Gauzzi, F., Montanari, R.: Structures of solid and liquid during melting and solidification of indium.Ann. New York Acad. Sci. 974 (2002), 68-78. 10.1111/j.1749-6632.2002.tb05897.x
Reference: [12] Crank, J.: Free and Moving Boundary Problems. Oxford Science Publication.Clarendon Press Oxford (1984). MR 0776227
Reference: [13] Cross, M., Bailey, C., Pericleous, K., Williams, A., Bojarevics, V., Croft, N., Taylor, G.: The multiphysics modeling of solidification and melting processes.JOM-e 54 (2002).
Reference: [14] Dantzig, J.: Modelling liquid-solid phase change with melt convection.Int. J. Numer. Methods Eng. 28 (1989), 1769-1785. MR 1008137, 10.1002/nme.1620280805
Reference: [15] Fabritiis, G. De, Mancini, A., Mansutti, D., Succi, S.: Mesoscopic models of liquid/solid phase transitions.Int. J. Modern Physics C. 9 (1998), 1405-1415. 10.1142/S0129183198001278
Reference: [16] III, H. C. de Groh, Lindstrom, T.: Interface shape and convection during solidification and melting of succinonitrile.NASA Technical Memorandum 106487 (1994).
Reference: [17] Derebail, R., Koster, J. N.: Numerical simulation of natural convection of gallium in a narrow gap.Int. J. Heat Mass Transfer 40 (1997), 1169-1180. Zbl 0925.76643, 10.1016/0017-9310(96)00044-0
Reference: [18] Davis, G. De Vahl, Hanjalic, K., Quere, P. Le, Bontoux, P.: Progress in Computational Heat and Mass Transfer. Proc 4th Int. Conf. Comput. Heat Mass Transfer, May 17-20, 2005, Paris.Lavoisier Paris (2005).
Reference: [19] Drazin, P. G., Reid, W. H.: Hydrodynamic Stability.Cambridge University Press Cambridge (1985).
Reference: [20] Epstein, M., Cheung, F. B.: Complex freezing melting interfaces in fluid flow.Ann. Rev. Fluid Mech. 15 (1983), 293-319. 10.1146/annurev.fl.15.010183.001453
Reference: [21] Gadkari, D. B., Shashidharan, P., Lal, K. B., Arora, B. M.: Influence of crystal-melt interface shape on self-seeding and single crystalline quality.Bull. Mater. Sci. 24 (2001), 475-482. 10.1007/BF02706718
Reference: [22] Gau, C., Viskanta, R.: Melting and solidification of a metal system in a rectangular cavity.Int. J. Heat Mass Transfer 27 (1984), 113-123. 10.1016/0017-9310(84)90243-6
Reference: [23] Gau, C., Viskanta, R.: Melting and solidification of a pure metal on a vertical wall.Transaction of the ASME 108 (1986), 174-181. 10.1115/1.3246884
Reference: [24] Golub, G., Loan, C. van: Matrix Computations.The Johns Hopkins University Press Baltimore (1989). MR 1002570
Reference: [25] Gondi, P., Montanari, R., Evangelista, E., Buroni, G.: X-ray study of structures of liquid metals with controlled convective motions.Microgravity Quarterly 7 (1997), 155-173.
Reference: [26] Hannoun, N., Alexiades, V., Mai, T. Z.: Resolving the controversy over tin and gallium melting in a rectangular cavity heated from the side.Numerical Heat Transfer, Part B 44 (2003), 253-276.
Reference: [27] Hannoun, N., Alexiades, V., Mai, T. Z.: A reference solution for phase change with convection.Int. J. Numer. Methods Fluids 48 (2005), 1283-1308. Zbl 1112.76402, MR 2153612, 10.1002/fld.979
Reference: [28] Hills, R. N., Roberts, P. H.: A macroscopic model of phase coarsening.Int. J. Non-Linear Mech. 25 (1990), 319-329. Zbl 0711.76092, 10.1016/0020-7462(90)90022-2
Reference: [29] Hirasaki, G. J., Hellums, J. D.: Boundary conditions on the vector and scalar potentials in viscous three-dimensional hydrodynamics.Q. Appl. Math. 28 (1970), 293-296. Zbl 0229.76031, 10.1090/qam/99793
Reference: [30] Hoger, A., Johnson, B. E.: Linear elasticity for constrained materials: Incompressibility.J. Elasticity 38 (1995), 69-93. Zbl 0824.73007, MR 1323555, 10.1007/BF00121464
Reference: [31] Hunter, S. C.: Mechanics of Continuous Media.Ellis Horwood Limited Chichester (1976). Zbl 0385.73002, MR 0445984
Reference: [32] Hurle, D. T. J.: Convective transport in melt growth systems.J. Crystal Growth 65 (1983), 124-132. 10.1016/0022-0248(83)90045-3
Reference: [33] Huppert, H. E.: The fluid mechanics of solidification.J Fluid Mech. 212 (1990), 209-240. MR 1051332, 10.1017/S0022112090001938
Reference: [34] Kang, K., Ryou, H.: Computation of solidification and melting using the PISO algorithm.Numer. Heat Transfer, Part B 46 (2004), 179-194. 10.1080/10407790490438563
Reference: [35] Kim, S., Anghaie, S., Chen, G.: Numerical prediction of multicellular melt flow during natural convection-dominated melting.J. Thermophysics and Heat Transfer 17 (2003), 62-68. 10.2514/2.6734
Reference: [36] Kumar, V., Durst, F., Ray, S.: Modeling moving-boundary problems of solidification and melting adopting an arbitrary Lagragian-Eulerian approach.Numer. Heat Transfer, Part B 49 (2006), 299-331. 10.1080/10407790500379981
Reference: [37] Lamazouade, A., Ganaoui, M. El, Morvan, D., Bontoux, P.: Numerical simulation of thermo-solutal convection during Bridgman crystal growth.Revue Generale de Thermique 38 (1999), 674-683. 10.1016/S0035-3159(99)80085-3
Reference: [38] Lee, Y., Korpela, S. A.: Multicellular natural convection in a vertical slot.J. Fluid Mech. 126 (1983), 91-121. Zbl 0533.76088, 10.1017/S0022112083000063
Reference: [39] Quere, P. Le, Gobin, D.: A note on possible flow instabilities in melting from the side.Int. J. Thermal Sci. 38 (1999), 595-600. 10.1016/S0035-3159(99)80039-7
Reference: [40] Mansutti, D., Graziani, G., Piva, R.: A discrete vector potential model for unsteady incompressible viscous flows.J. Comput. Phys. 92 (1991), 161-184. Zbl 0712.76038, 10.1016/0021-9991(91)90296-W
Reference: [41] Mansutti, D., Baldoni, F., Rajagopal, K. R.: On the influence of the deformation of the forming solid in the solidification of a semi-infinte water-layer of fluid.Math. Models Methods Appl. Sci. 11 (2001), 367-386. MR 1820678, 10.1142/S0218202501000891
Reference: [42] Mansutti, D., Raffo, R., Santi, R.: Liquid/Solid phase change with convection and deformations: 2D case.Progress in Industrial Mathematics at ECMI Mathematics in Industry Vol. 8, 2004 A. Di Bucchianico, R. M. M. Mattheij, M. A. Peletier Springer Berlin (2006), 268-272. Zbl 1309.80003, MR 2228611
Reference: [43] Miller, W., Succi, S., Mansutti, D.: A lattice Boltzmann model for anisotropic liquid/solid phase transition.Phys. Rev. Lett. 86 (2001), 3578-3581. 10.1103/PhysRevLett.86.3578
Reference: [44] Rady, M. A., Mohanty, A. K.: Natural convection during melting and solidification of pure metals in a cavity.Numer. Heat Transfer, Part A 29 (1996), 49-63. 10.1080/10407789608913778
Reference: [45] Sampath, R., Zabaras, N.: An object oriented implementation of a front tracking finite element method for directional solidification processes.Int. J. Numer. Methods Eng. 44 (1999), 1227-1265. Zbl 0943.76052, 10.1002/(SICI)1097-0207(19990330)44:9<1227::AID-NME471>3.0.CO;2-R
Reference: [46] Slattery, J. C.: Momentum, Energy and Mass Transfer in Continua.McGraw-Hill New York (1972).
Reference: [47] Song, R., Dhatt, G., Cheikh, A. Ben: Thermo-mechanical finite element model of casting systems.Int. J. Numer. Methods Eng. 30 (1990), 579-599. 10.1002/nme.1620300403
Reference: [48] Stella, F., Giangi, M.: Melting of a pure metal on a vertical wall: numerical simulation.Numer. Heat Transfer, Part A 38 (2000), 193-208. 10.1080/10407780050135405
Reference: [49] Stefan, J.: Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere.Sitzungsberichte der "Osterreichischen Akademie der Wissenschaften Mathematisch-Naturwissen-schaftliche Klasse, Abteilung 2, Mathematik, Astronomie, Physik, Meteorologie und Technik 98 (1988), 965-983 German.
Reference: [50] Szekely, J., Chambra, P. S.: The effect of natural convection on the shape and movement of the melt-solid interface in the controlled solidification.Met. Trans. B1 (1970), 1195-1203. 10.1007/BF02900231
Reference: [51] Tenchev, R. T., Mackenzie, J. A., Scanlon, T. J., Stickland, M. T.: Finite element moving mesh analysis of phase change problems with natural convection.Int. J. Heat Fluid Flow 26 (2005), 597-612. 10.1016/j.ijheatfluidflow.2005.03.003
Reference: [52] Teskeredzic, A., Demirdzic, I., Muzaferija, S.: Numerical method for heat transfer, fluid flow and stress analysis in phase-change problems.Numer. Heat Transfer, Part B 42 (2002), 437-459. 10.1080/10407790190054021
Reference: [53] Truesdell, C., Rajagopal, K. R.: An Introduction to the Mechanics of Fluids.Birkhäuser Boston (2000). Zbl 0942.76001, MR 1731441
Reference: [54] Vorst, H. Van der: Bi-CGSTAB: A fast and smoothly converging variant of the Bi-CG for the solution of non-symmetric linear systems.SIAM J. Sci. Stat. Comput. 13 (1992), 631-644. MR 1149111, 10.1137/0913035
Reference: [55] Viswanath, R., Jaluria, Y.: A comparison of different solution methodologies for melting and solidification problems in enclosures.Numer. Heat Transfer, Part B. 24 (1993), 77-105. 10.1080/10407799308955883
Reference: [56] Voller, V. R., Cross, M., Markatos, N.: An enthalpy method for convection/diffusion phase change.Int. J. Numer. Methods Eng. 24 (1987), 271-284. Zbl 0609.76104, 10.1002/nme.1620240119
Reference: [57] Voller, V. R.: An overview of numerical methods for solving phase change problems: a review.Adv. Numer. Heat Transfer W. J. Minkowycz, E. M. Sparrow Taylor & Francis Philadelphia (1997).
Reference: [58] Yeoh, G. H., Davis, G. de Vahl, Leonardi, E., III, H. C. de Groh, Yao, M.: A numerical and experimental study of natural convection and interface shape in crystal growth.J. Crystal Growth 173 (1997), 492-502. 10.1016/S0022-0248(96)00851-2
.

Files

Files Size Format View
AplMat_56-2011-1_7.pdf 936.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo