Previous |  Up |  Next

Article

Keywords:
B-Fredholm operator; Drazin invertible operator; single-valued extension property
Summary:
Let $X$ be a Banach space and $T$ be a bounded linear operator on $X$. We denote by $S(T)$ the set of all complex $\lambda \in \mathbb C$ such that $T$ does not have the single-valued extension property at $\lambda $. In this note we prove equality up to $S(T)$ between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum. As applications, we investigate generalized Weyl's theorem for operator matrices and multiplier operators.
References:
[1] Aiena, P.: Fredholm and Local Spectral Theory with Applications to Multipliers. Kluwer Academic Publishers (2004), Dordrecht. MR 2070395 | Zbl 1077.47001
[2] Amouch, M.: Weyl type theorems for operators satisfying the single-valued extension property. J. Math. Anal. Appl. 326 (2007), 1476-1484. DOI 10.1016/j.jmaa.2006.03.085 | MR 2280999 | Zbl 1117.47007
[3] Amouch, M.: Polaroid operators with SVEP and perturbations of property $(gw)$. Mediterr. J. Math. 6 (2009), 461-470. DOI 10.1007/s00009-009-0018-3 | MR 2565278 | Zbl 1221.47009
[4] Amouch, M., Zguitti, H.: On the equivalence of Browder's and generalized Browder's theorem. Glasg. Math. J. 48 (2006), 179-185. DOI 10.1017/S0017089505002971 | MR 2224938 | Zbl 1097.47012
[5] Benhida, C., Zerouali, E. H., Zguitti, H.: Spectral properties of upper triangular block operators. Acta Sci. Math. (Szeged) 71 (2005), 681-690. MR 2206603 | Zbl 1105.47005
[6] Berkani, M.: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244-249. DOI 10.1007/BF01236475 | MR 1694711 | Zbl 0939.47010
[7] Berkani, M.: Restriction of an operator to the range of its powers. Stud. Math. 140 (2000), 163-175. MR 1784630 | Zbl 0978.47011
[8] Berkani, M.: Index of Fredholm operators and generalization of a Weyl theorem. Proc. Am. Math. Soc. 130 (2002), 1717-1723. DOI 10.1090/S0002-9939-01-06291-8 | MR 1887019
[9] Berkani, M., Amouch, M.: Preservation of property ($gw$) under perturbations. Acta Sci. Math. (Szeged) 74 (2008), 769-781. MR 2487945 | Zbl 1199.47068
[10] Berkani, M., Arroud, A.: Generalized Weyl's theorem and hyponormal operators. J. Aust. Math. Soc. 76 (2004), 291-302. DOI 10.1017/S144678870000896X | MR 2041251 | Zbl 1061.47021
[11] Berkani, M., Arroud, A.: B-Fredholm and spectral properties for multipliers in Banach algebras. Rend. Circ. Mat. Palermo 55 (2006), 385-397. DOI 10.1007/BF02874778 | MR 2287069 | Zbl 1123.47031
[12] Berkani, M., Castro, N., Djordjević, S. V.: Single valued extension property and generalized Weyl's theorem. Math. Bohem. 131 (2006), 29-38. MR 2211001 | Zbl 1114.47015
[13] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged) 69 (2003), 359-376. MR 1991673 | Zbl 1050.47014
[14] Duggal, B. P., Harte, R., Jeon, I. H.: Polaroid operators and Weyl's theorem. Proc. Am. Math. Soc. 132 (2004), 1345-1349. DOI 10.1090/S0002-9939-03-07381-7 | MR 2053338 | Zbl 1062.47004
[15] Finch, J. K.: The single valued extension property on a Banach space. Pacific J. Math. 58 (1975), 61-69. DOI 10.2140/pjm.1975.58.61 | MR 0374985 | Zbl 0315.47002
[16] Heuser, H. G.: Functional Analysis. John Wiley Chichester (1982). MR 0640429 | Zbl 0465.47001
[17] Houimdi, M., Zguitti, H.: Propriétés spectrales locales d'une matrice carrée des opérateurs. Acta Math. Vietnam. 25 (2000), 137-144. MR 1770883 | Zbl 0970.47003
[18] Laursen, K. B.: Operators with finite ascent. Pacific J. Math. 152 (1992), 323-336. DOI 10.2140/pjm.1992.152.323 | MR 1141799 | Zbl 0783.47028
[19] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory. Clarendon Oxford (2000). MR 1747914 | Zbl 0957.47004
[20] Lay, D. C.: Spectral analysis using ascent, descent, nullity and defect. Math. Ann. 184 (1970), 197-214. DOI 10.1007/BF01351564 | MR 0259644 | Zbl 0177.17102
[21] Mbekhta, M., Müller, V.: Axiomatic theory of spectrum II. Stud. Math. 119 (1996), 129-147. MR 1391472
[22] Zerouali, E. H., Zguitti, H.: On the weak decomposition property $(\delta_w)$. Stud. Math. 167 (2005), 17-28. DOI 10.4064/sm167-1-2 | MR 2133369 | Zbl 1202.47005
[23] Zguitti, H.: A note on generalized Weyl's theorem. J. Math. Anal. Appl. 316 (2006), 373-381. DOI 10.1016/j.jmaa.2005.04.057 | MR 2201769 | Zbl 1101.47002
[24] Zguitti, H.: On the Drazin inverse for upper triangular operator matrices. Bull. Math. Anal. Appl. 2 (2010), 27-33. MR 2658125
Partner of
EuDML logo