Previous |  Up |  Next

Article

Title: B-Fredholm and Drazin invertible operators through localized SVEP (English)
Author: Amouch, M.
Author: Zguitti, H.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 1
Year: 2011
Pages: 39-49
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a Banach space and $T$ be a bounded linear operator on $X$. We denote by $S(T)$ the set of all complex $\lambda \in \mathbb C$ such that $T$ does not have the single-valued extension property at $\lambda $. In this note we prove equality up to $S(T)$ between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum. As applications, we investigate generalized Weyl's theorem for operator matrices and multiplier operators. (English)
Keyword: B-Fredholm operator
Keyword: Drazin invertible operator
Keyword: single-valued extension property
MSC: 47A10
MSC: 47A11
MSC: 47A53
MSC: 47A55
idZBL: Zbl 1216.47018
idMR: MR2807707
DOI: 10.21136/MB.2011.141448
.
Date available: 2011-03-31T11:23:52Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141448
.
Reference: [1] Aiena, P.: Fredholm and Local Spectral Theory with Applications to Multipliers.Kluwer Academic Publishers (2004), Dordrecht. Zbl 1077.47001, MR 2070395
Reference: [2] Amouch, M.: Weyl type theorems for operators satisfying the single-valued extension property.J. Math. Anal. Appl. 326 (2007), 1476-1484. Zbl 1117.47007, MR 2280999, 10.1016/j.jmaa.2006.03.085
Reference: [3] Amouch, M.: Polaroid operators with SVEP and perturbations of property $(gw)$.Mediterr. J. Math. 6 (2009), 461-470. Zbl 1221.47009, MR 2565278, 10.1007/s00009-009-0018-3
Reference: [4] Amouch, M., Zguitti, H.: On the equivalence of Browder's and generalized Browder's theorem.Glasg. Math. J. 48 (2006), 179-185. Zbl 1097.47012, MR 2224938, 10.1017/S0017089505002971
Reference: [5] Benhida, C., Zerouali, E. H., Zguitti, H.: Spectral properties of upper triangular block operators.Acta Sci. Math. (Szeged) 71 (2005), 681-690. Zbl 1105.47005, MR 2206603
Reference: [6] Berkani, M.: On a class of quasi-Fredholm operators.Integral Equations Oper. Theory 34 (1999), 244-249. Zbl 0939.47010, MR 1694711, 10.1007/BF01236475
Reference: [7] Berkani, M.: Restriction of an operator to the range of its powers.Stud. Math. 140 (2000), 163-175. Zbl 0978.47011, MR 1784630, 10.4064/sm-140-2-163-175
Reference: [8] Berkani, M.: Index of Fredholm operators and generalization of a Weyl theorem.Proc. Am. Math. Soc. 130 (2002), 1717-1723. MR 1887019, 10.1090/S0002-9939-01-06291-8
Reference: [9] Berkani, M., Amouch, M.: Preservation of property ($gw$) under perturbations.Acta Sci. Math. (Szeged) 74 (2008), 769-781. Zbl 1199.47068, MR 2487945
Reference: [10] Berkani, M., Arroud, A.: Generalized Weyl's theorem and hyponormal operators.J. Aust. Math. Soc. 76 (2004), 291-302. Zbl 1061.47021, MR 2041251, 10.1017/S144678870000896X
Reference: [11] Berkani, M., Arroud, A.: B-Fredholm and spectral properties for multipliers in Banach algebras.Rend. Circ. Mat. Palermo 55 (2006), 385-397. Zbl 1123.47031, MR 2287069, 10.1007/BF02874778
Reference: [12] Berkani, M., Castro, N., Djordjević, S. V.: Single valued extension property and generalized Weyl's theorem.Math. Bohem. 131 (2006), 29-38. Zbl 1114.47015, MR 2211001
Reference: [13] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators.Acta Sci. Math. (Szeged) 69 (2003), 359-376. Zbl 1050.47014, MR 1991673
Reference: [14] Duggal, B. P., Harte, R., Jeon, I. H.: Polaroid operators and Weyl's theorem.Proc. Am. Math. Soc. 132 (2004), 1345-1349. Zbl 1062.47004, MR 2053338, 10.1090/S0002-9939-03-07381-7
Reference: [15] Finch, J. K.: The single valued extension property on a Banach space.Pacific J. Math. 58 (1975), 61-69. Zbl 0315.47002, MR 0374985, 10.2140/pjm.1975.58.61
Reference: [16] Heuser, H. G.: Functional Analysis.John Wiley Chichester (1982). Zbl 0465.47001, MR 0640429
Reference: [17] Houimdi, M., Zguitti, H.: Propriétés spectrales locales d'une matrice carrée des opérateurs.Acta Math. Vietnam. 25 (2000), 137-144. Zbl 0970.47003, MR 1770883
Reference: [18] Laursen, K. B.: Operators with finite ascent.Pacific J. Math. 152 (1992), 323-336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323
Reference: [19] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory.Clarendon Oxford (2000). Zbl 0957.47004, MR 1747914
Reference: [20] Lay, D. C.: Spectral analysis using ascent, descent, nullity and defect.Math. Ann. 184 (1970), 197-214. Zbl 0177.17102, MR 0259644, 10.1007/BF01351564
Reference: [21] Mbekhta, M., Müller, V.: Axiomatic theory of spectrum II.Stud. Math. 119 (1996), 129-147. MR 1391472, 10.4064/sm-119-2-129-147
Reference: [22] Zerouali, E. H., Zguitti, H.: On the weak decomposition property $(\delta_w)$.Stud. Math. 167 (2005), 17-28. Zbl 1202.47005, MR 2133369, 10.4064/sm167-1-2
Reference: [23] Zguitti, H.: A note on generalized Weyl's theorem.J. Math. Anal. Appl. 316 (2006), 373-381. Zbl 1101.47002, MR 2201769, 10.1016/j.jmaa.2005.04.057
Reference: [24] Zguitti, H.: On the Drazin inverse for upper triangular operator matrices.Bull. Math. Anal. Appl. 2 (2010), 27-33. MR 2658125
.

Files

Files Size Format View
MathBohem_136-2011-1_5.pdf 258.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo