Previous |  Up |  Next

Article

Title: On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities (English)
Author: Lanzendörfer, Martin
Author: Stebel, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 3
Year: 2011
Pages: 265-285
Summary lang: English
.
Category: math
.
Summary: We consider a class of incompressible fluids whose viscosities depend on the pressure and the shear rate. Suitable boundary conditions on the traction at the inflow/outflow part of boundary are given. As an advantage of this, the mean value of the pressure over the domain is no more a free parameter which would have to be prescribed otherwise. We prove the existence and uniqueness of weak solutions (the latter for small data) and discuss particular applications of the results. (English)
Keyword: existence
Keyword: weak solutions
Keyword: incompressible fluids
Keyword: non-Newtonian fluids
Keyword: pressure dependent viscosity
Keyword: shear dependent viscosity
Keyword: inflow/outflow boundary conditions
Keyword: pressure boundary conditions
Keyword: filtration boundary conditions
MSC: 35A01
MSC: 35A02
MSC: 35D30
MSC: 35J65
MSC: 35Q35
MSC: 76A05
MSC: 76D03
idZBL: Zbl 1224.35347
idMR: MR2800578
DOI: 10.1007/s10492-011-0016-1
.
Date available: 2011-05-17T08:26:33Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141486
.
Reference: [1] Amrouche, C., Girault, V.: Decomposition of vector spaces and application of the Stokes problem in arbitrary dimension.Czechoslovak Math. J. 44 (1994), 109-140. MR 1257940
Reference: [2] Bear, J.: Dynamics of Fluids in Porous Media.Elsevier New York (1972). Zbl 1191.76001
Reference: [3] Bogovskiĭ, M. E.: Solution of some problems of vector analysis associated with the operators div and grad.Tr. Semin. S. L. Soboleva 1 (1980), 5-40 Russian. MR 0631691
Reference: [4] Boyer, F., Fabrie, P.: Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations.Discrete Contin. Dyn. Syst., Ser. B 7 (2007), 219-250 (electronic). MR 2276406
Reference: [5] Bruneau, C.-H.: Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations.M2AN, Math. Model. Numer. Anal. 34 (2000), 303-314. Zbl 0954.76014, MR 1765661, 10.1051/m2an:2000142
Reference: [6] Bruneau, C.-H., Fabrie, P.: Effective downstream boundary conditions for incompressible Navier-Stokes equations.Int. J. Numer. Methods Fluids 19 (1994), 693-705. Zbl 0816.76024, 10.1002/fld.1650190805
Reference: [7] Bruneau, C.-H., Fabrie, P.: New efficient boundary conditions for incompressible Navier-Stokes equations: A well-posedness result.RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 815-840. Zbl 0865.76016, MR 1423081, 10.1051/m2an/1996300708151
Reference: [8] Bulíček, M., Fišerová, V.: Existence theory for steady flows of fluids with pressure and shear rate dependent viscosity, for low values of the power-law index.Z. Anal. Anwend. 28 (2009), 349-371. Zbl 1198.35174, MR 2506365, 10.4171/ZAA/1389
Reference: [9] Bulíček, M., Málek, J., Rajagopal, K. R.: Mathematical analysis of unsteady flows of fluids with pressure, shear-rate and temperature dependent material moduli, that slip at solid boundaries.SIAM J. Math. Anal. 41 (2009), 665-707. Zbl 1195.35239, MR 2515781, 10.1137/07069540X
Reference: [10] Bulíček, M., Málek, J., Rajagopal, K. R.: Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity.Indiana Univ. Math. J. 56 (2007), 51-85. Zbl 1129.35055, MR 2305930, 10.1512/iumj.2007.56.2997
Reference: [11] Bulíček, M., Málek, J., Rajagopal, K. R.: Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling $\nu(p,\cdot)\to+\infty$ as $p\to+\infty$.Czechoslovak Math. J. 59 (2009), 503-528. Zbl 1224.35311, MR 2532387, 10.1007/s10587-009-0034-2
Reference: [12] Conca, C., Murat, F., Pironneau, O.: The Stokes and Navier-Stokes equations with boundary conditions involving the pressure.Japan J. Math., New Ser. 20 (1994), 279-318. Zbl 0826.35093, MR 1308419, 10.4099/math1924.20.279
Reference: [13] Feistauer, M., Neustupa, T.: On non-stationary viscous incompressible flow through a cascade of profiles.Math. Methods Appl. Sci. 29 (2006), 1907-1941. Zbl 1124.35054, MR 2259990, 10.1002/mma.755
Reference: [14] Filo, J., Zaušková, A.: 2D Navier-Stokes equations in a time dependent domain with Neumann type boundary conditions.J. Math. Fluid Mech. 10 (2008), 1-46. MR 2602913
Reference: [15] Forchheimer, P.: Wasserbewegung durch Boden.Z. Ver. Deutsch. Ing. 45 (1901), 1781-1788 German.
Reference: [16] Franta, M., Málek, J., Rajagopal, K. R.: On steady flows of fluids with pressure- and shear-dependent viscosities.Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 461 (2005), 651-670. Zbl 1145.76311, MR 2121929, 10.1098/rspa.2004.1360
Reference: [17] Hämäläinen, J., Mäkinen, R. A., Tarvainen, P.: Optimal design of paper machine headboxes.Int. J. Numer. Methods Fluids 34 (2000), 685-700. 10.1002/1097-0363(20001230)34:8<685::AID-FLD75>3.0.CO;2-O
Reference: [18] Haslinger, J., Málek, J., Stebel, J.: Shape optimization in problems governed by generalised Navier-Stokes equations: existence analysis.Control Cybern. 34 (2005), 283-303. Zbl 1167.49328, MR 2211072
Reference: [19] Hassanizadeh, S. M., Gray, W. G.: High velocity flow in porous media.Transp. in Porous Media 2 (1987), 521-531. 10.1007/BF00192152
Reference: [20] Heywood, J. G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations.Int. J. Numer. Methods Fluids 22 (1996), 325-352. Zbl 0863.76016, MR 1380844, 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
Reference: [21] Hron, J., Málek, J., Nečas, J., Rajagopal, K. R.: Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities.Math. Comput. Simul. 61 (2003), 297-315. Zbl 1205.76159, MR 1984133, 10.1016/S0378-4754(02)00085-X
Reference: [22] Hron, J., Málek, J., Rajagopal, K. R.: Simple flows of fluids with pressure-dependent viscosities.Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 457 (2001), 1603-1622. Zbl 1052.76017, 10.1098/rspa.2000.0723
Reference: [23] Kračmar, S., Neustupa, J.: A weak solvability of a steady variational inequality of the Navier-Stokes type with mixed boundary conditions.Nonlinear Anal., Theory Methods Appl. 47 (2001), 4169-4180. Zbl 1042.35605, MR 1972357, 10.1016/S0362-546X(01)00534-X
Reference: [24] Kučera, P.: Solutions of the stationary Navier-Stokes equations with mixed boundary conditions in bounded domain.In: Analysis, Numerics and Applications of Differential and Integral Equations M. Bach et al. Pitman Res. Notes Math. Ser. 379 (1998), 127-131. MR 1606691
Reference: [25] Kučera, P., Skalák, Z.: Local solutions to the Navier-Stokes equations with mixed boundary conditions.Acta Appl. Math. 54 (1998), 275-288. MR 1671783, 10.1023/A:1006185601807
Reference: [26] Lanzendörfer, M.: On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate.Nonlinear Anal., Real World Appl. 10 (2009), 1943-1954. Zbl 1163.76335, MR 2508405
Reference: [27] Málek, J., Nečas, J., Rajagopal, K. R.: Global analysis of the flows of fluids with pressure-dependent viscosities.Arch. Ration. Mech. Anal. 165 (2002), 243-269. Zbl 1022.76011, MR 1941479, 10.1007/s00205-002-0219-4
Reference: [28] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Appl. Math. Math. Comput., Vol. 13.Chapman &amp; Hall London (1996). MR 1409366
Reference: [29] Málek, J., Rajagopal, K. R.: Mathematical issues concerning the Navier-Stokes equations and some of its generalizations.In: Evolutionary equations, Vol. II. Handbook Differential Equtions Elsevier/North Holland Amsterdam (2005), 371-459. Zbl 1095.35027, MR 2182831
Reference: [30] Málek, J., Rajagopal, K. R.: Mathematical properties of the solutions to the equations governing the flow of fluids with pressure and shear rate dependent viscosities.In: Handbook Math. Fluid Dyn., Vol. IV Elsevier Amsterdam (2006). MR 3929620
Reference: [31] Mikeli&apos;c, A.: Homogenization theory and applications to filtration through porous media.Filtration in Porous Media and Industrial Application. Lect. Notes Math. Vol. 1734 A. Fasano Springer Berlin (2000). MR 1816145
Reference: [32] Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, Vol. 27.Oxford University Press Oxford (2004). MR 2084891
Reference: [33] Quarteroni, A.: Fluid structure interaction for blood flow problems.Lecture Notes on Simulation of Fluid and Structure Interaction. AMS-AMIF Summer School, Prague European Mathematical Society Prague (2001).
Reference: [34] Shopov, P. J., Iordanov, Y. I.: Numerical solution of Stokes equations with pressure and filtration boundary conditions.J. Comput. Phys. 112 (1994), 12-23. Zbl 0798.76042, 10.1006/jcph.1994.1078
.

Files

Files Size Format View
AplMat_56-2011-3_2.pdf 338.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo