Previous |  Up |  Next

Article

Title: Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument (English)
Author: Du, Bo
Author: Hu, Xueping
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 3
Year: 2011
Pages: 253-264
Summary lang: English
.
Category: math
.
Summary: By using the coincidence degree theory, we study a type of $p$-Laplacian neutral Rayleigh functional differential equation with deviating argument to establish new results on the existence of $T$-periodic solutions. (English)
Keyword: deviating argument
Keyword: neutral
Keyword: coincidence degree theory
MSC: 34B15
MSC: 34B20
MSC: 34B24
MSC: 34K13
MSC: 34K40
MSC: 47N20
idZBL: Zbl 1224.34226
idMR: MR2800577
DOI: 10.1007/s10492-011-0015-2
.
Date available: 2011-05-17T08:23:22Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141487
.
Reference: [1] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations.Springer Berlin (1977). Zbl 0339.47031, MR 0637067
Reference: [2] Hale, J.: Theory of Functional Differential Equations, 2nd ed.Springer New York (1977). Zbl 0352.34001, MR 0508721
Reference: [3] Komanovskij, V. B., Nosov, V. R.: Stability of Functional Differential Equations.Academic Press London (1986). MR 0860947
Reference: [4] Kuang, Y.: Delay Differential Equations: with Applications in Population Dynamics.Academic Press Boston (1993). Zbl 0777.34002, MR 1218880
Reference: [5] Liu, B., Huang, L.: Existence and uniqueness of periodic solutions for a kind of first order neutral functional differential equation.J. Math. Anal. Appl. 322 (2006), 121-132. MR 2238153, 10.1016/j.jmaa.2005.08.069
Reference: [6] Lu, S., Ren, J., Ge, W.: Problems of periodic solutions for a kind of second order neutral functional differential equation.Appl. Anal. 82 (2003), 411-426. Zbl 1044.34039, MR 1982886, 10.1080/0003681031000103013
Reference: [7] Lu, S., Ge, W.: Existence of periodic solutions for a kind of second-order neutral functional differential equation.Appl. Math. Comput. 157 (2004), 433-448. Zbl 1059.34043, MR 2088265, 10.1016/j.amc.2003.08.044
Reference: [8] Serra, E.: Periodic solutions for some nonlinear differential equations of neutral type.Nonlinear Anal., Theory Methods Appl. 17 (1991), 139-151. Zbl 0735.34066, MR 1118073, 10.1016/0362-546X(91)90217-O
Reference: [9] Si, J.: Discussion on the periodic solutions for higher-order linear equation of neutral type equation with constant coefficients.Appl. Math. Mech., Engl. Ed. 17 (1996), 29-37. MR 1382460, 10.1007/BF00131292
.

Files

Files Size Format View
AplMat_56-2011-3_1.pdf 255.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo