Previous |  Up |  Next

Article

Title: 2D-1D dimensional reduction in a toy model for magnetoelastic interactions (English)
Author: Tilioua, Mouhcine
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 3
Year: 2011
Pages: 287-295
Summary lang: English
.
Category: math
.
Summary: The paper deals with the dimensional reduction from 2D to 1D in magnetoelastic interactions. We adopt a simplified, but nontrivial model described by the Landau-Lifshitz-Gilbert equation for the magnetization field coupled to an evolution equation for the displacement. We identify the limit problem by using the so-called energy method. (English)
Keyword: magnetoelastic materials
Keyword: Landau-Lifshitz-Gilbert equation
Keyword: dimensional reduction
MSC: 35B40
MSC: 35D30
MSC: 35M33
MSC: 35Q60
MSC: 35Q74
MSC: 74B05
MSC: 78A25
MSC: 82D40
idZBL: Zbl 1224.35058
idMR: MR2800579
DOI: 10.1007/s10492-011-0017-0
.
Date available: 2011-05-17T08:27:22Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141489
.
Reference: [1] Aharoni, A.: Introduction to the Theory of Ferromagnetism.Oxford University Press London (1996).
Reference: [2] Brown, W. F.: Magnetoelastic Interactions. Springer Tracts in Natural Philosophy, Vol. 9.Springer New York-Heidelberg-Berlin (1966). 10.1007/978-3-642-87396-6
Reference: [3] Ciarlet, P. G.: Introduction to Linear Shell Theory.Gauthier-Villars Paris (1998). Zbl 0912.73001, MR 1648549
Reference: [4] Ciarlet, P. G., Destuynder, Ph.: A justification of the two-dimensional linear plate model.J. Mécanique 18 (1979), 315-344. Zbl 0415.73072, MR 0533827
Reference: [5] Hubert, A., Schäfer, R.: Magnetic Domains: The Analysis of Magnetic Microstructures.Springer New York-Berlin (1998).
Reference: [6] Landau, L. D., Lifshitz, E. M.: Electrodynamics of Continuous Media.Pergamon Press Oxford (1986). MR 0766230
Reference: [7] Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires.Dunod & Gauthier-Villars Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [8] Simon, J.: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl. 146 (1987), 65-96. MR 0916688
Reference: [9] Valente, V.: An evolutive model for magnetorestrictive interactions: existence of weak solutions.SPIE-Proceeding on Smart Structures and Materials, Modeling, Signal Processing and Control Elsevier Amsterdam (2006).
.

Files

Files Size Format View
AplMat_56-2011-3_3.pdf 237.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo