Previous |  Up |  Next

Article

Title: A strong invariance principle for negatively associated random fields (English)
Author: Cai, Guang-hui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 1
Year: 2011
Pages: 27-40
Summary lang: English
.
Category: math
.
Summary: In this paper we obtain a strong invariance principle for negatively associated random fields, under the assumptions that the field has a finite $(2+\delta )$th moment and the covariance coefficient $u(n)$ exponentially decreases to $0$. The main tools are the Berkes-Morrow multi-parameter blocking technique and the Csörgő-Révész quantile transform method. (English)
Keyword: strong invariance principle
Keyword: negative association
Keyword: random field
Keyword: blocking technique
Keyword: quantile transform
MSC: 60B10
MSC: 60F15
MSC: 60F17
MSC: 60G60
idZBL: Zbl 1224.60008
idMR: MR2782757
DOI: 10.1007/s10587-011-0015-0
.
Date available: 2011-05-23T12:28:25Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141516
.
Reference: [1] Alam, K., Saxena, K. M. L.: Positive dependence in multivariate distributions.Comm. Statist. A 10 1183-1196. Zbl 0471.62045, MR 0623526
Reference: [2] Balan, R. M.: A strong invariance principle for associated random fields.Ann. Probab. 33 823-840. Zbl 1070.60032, MR 2123212, 10.1214/009117904000001071
Reference: [3] Berkes, I., Philipp, W.: Approximation theorems for independent and weakly dependent random vectors.Ann. Probab. 7 19-54. Zbl 0392.60024, MR 0515811
Reference: [4] Berkes, I., Morrow, G. J.: Strong invariance principles for mixing random fields.Z. Wahrsch. view. Gebiete 57 15-37. Zbl 0443.60029, MR 0623453, 10.1007/BF00533712
Reference: [5] Bulinski, Shashkin: The strong invariance principles for dependent multi-indexed random variables.Dokl. Acad. Nauk 403 155-158. MR 2161593
Reference: [6] Bulinski, Shashkin: Strong invariance principles for dependent random fields.ISM Lect. Notes-Monograph Series Dynamics and Stochastics 48 128-143. MR 2306195
Reference: [7] Cai, G. H., Wang, J. F.: Uniform bounds in normal approximation under negatively associated random fields.Statistics and Probability Letters 79 215-222. Zbl 1157.60013, MR 2483543, 10.1016/j.spl.2008.07.039
Reference: [8] Csörgő, M., Révész, P.: I. A new method to prove Strassen type laws of invariance principle.Z. Wahrsch. view. Gebiete 31 255-260. MR 0375411, 10.1007/BF00532865
Reference: [9] Csörgő, M., Révész, P.: Strong Approximations in Probability and Statistics.Academic Press, New York. MR 0666546
Reference: [10] Feller, W.: An Introduction to Probability Theory and its Applications 2.2nd ed John Wiley. New York. MR 0088081
Reference: [11] Joag-Dev, K., Proschan, F.: Negative association of random variables with applications.Ann. Statist. 11 286-295. MR 0684886, 10.1214/aos/1176346079
Reference: [12] Newman, C. M.: Asympotic independence and limit theorems for positively and negatively dependent random variables.Inequalities in Statistics and Probability (Tong, Y. L., ed., Institute of Mathematical Statistics, Hayward, CA) 127-140. MR 0789244
Reference: [13] Roussas, G. G.: Asymptotic normality of random fields of positively or negatively associated processes.J. Multivariate Anal. 50 152-173. Zbl 0806.60040, MR 1292613, 10.1006/jmva.1994.1039
Reference: [14] Shao, Q. M., Su, C.: The law of the iterated logarithm for negatively associated random variables.Stochastic Process. Appl. 83 139-148. MR 1705604, 10.1016/S0304-4149(99)00026-5
Reference: [15] Su, C., Zhao, L., Wang, Y.: Moment inequalities and weak convergence for negatively associated sequences.Sci. China Ser. A 40 172-182. Zbl 0907.60023, MR 1451096, 10.1007/BF02874436
Reference: [16] Wichura, M. J.: Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments.Ann. Probab. 1 272-296. Zbl 0288.60030, MR 0394894, 10.1214/aop/1176996980
Reference: [17] Yu, H.: A strong invariance principle for associated sequences.Ann. Probab. 24 2079-2097. Zbl 0879.60028, MR 1415242
Reference: [18] Zhang, L. X.: A functional central limit theorem for asymptotically negatively dependent random fields.Acta Math. Hungar. 86 237-259. Zbl 0964.60035, MR 1756175, 10.1023/A:1006720512467
Reference: [19] Zhang, L. X.: The weak convergence for functions of negatively associated random variables.J. Multivariate Anal. 78 272-298. Zbl 0989.60033, MR 1859759, 10.1006/jmva.2000.1949
Reference: [20] Zhang, L. X., Wen, J. W.: A weak convergence for negatively associated fields.Statist. Probab. Lett. 53 259-267. Zbl 0994.60026, MR 1841627, 10.1016/S0167-7152(01)00021-9
.

Files

Files Size Format View
CzechMathJ_61-2011-1_4.pdf 292.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo