Previous |  Up |  Next

Article

Title: Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \leq q < p <\infty $ (English)
Author: Abdikalikova, Zamira
Author: Oinarov, Ryskul
Author: Persson, Lars-Erik
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 1
Year: 2011
Pages: 7-26
Summary lang: English
.
Category: math
.
Summary: We consider a new Sobolev type function space called the space with multiweighted derivatives $W_{p,\bar {\alpha }}^n$, where $\bar {\alpha } = (\alpha _0, \alpha _1, \ldots , \alpha _n)$, $\alpha _i \in \Bbb R$, $i=0,1, \ldots , n$, and $\|f\|_{W_{p,{\bar \alpha }}^n} = \|D_{{\bar \alpha }}^n f\|_p + \sum _{i=0}^{n-1} |D_{\bar \alpha }^i f(1)|$, $$ D_{{\bar \alpha }}^0 f(t) = t^{\alpha _0} f(t), \quad D_{{\bar \alpha }}^i f(t) = t^{\alpha _i} \frac {{\rm d}}{{\rm d}t} D_{{\bar \alpha }}^{i-1} f(t), \enspace i=1, 2, \ldots , n. $$ We establish necessary and sufficient conditions for the boundedness and compactness of the embedding $W_{p,{\bar \alpha }}^n \hookrightarrow W_{q,{\bar \beta }}^m $, when $1 \leq q < p < \infty $, $0\leq m <n$. (English)
Keyword: weighted function space
Keyword: multiweighted derivative
Keyword: embedding theorems
Keyword: compactness.
MSC: 46E30
MSC: 46E35
idZBL: Zbl 1224.46062
idMR: MR2782756
DOI: 10.1007/s10587-011-0014-1
.
Date available: 2011-05-23T12:26:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141515
.
Reference: [1] Abdikalikova, Z. T., Baiarystanov, A., Oinarov, R.: Compactness of embedding between spaces with multiweighted derivatives -- the case $p\leq q$.Math. Inequal. Appl Submitted.
Reference: [2] Abdikalikova, Z. T., Kalybay, A. A.: Summability of a Tchebysheff system of functions.J. Funct. Spaces Appl. 8 (2010), 87-102. Zbl 1189.41013, MR 2648767, 10.1155/2010/405313
Reference: [3] Andô, T.: On compactness of integral operators.Nederl. Akad. Wet., Proc., Ser. A 65 24 (1962), 235-239. MR 0139016
Reference: [4] Kalybay, A. A.: Interrelation of spaces with multiweighted derivatives.Vestnik Karaganda State University (1999), 13-22 Russian.
Reference: [5] Kudryavtsev, L. D.: Equivalent norms in weighted spaces.Proc. Steklov Inst. Math. 170 (1987), 185-218. Zbl 0616.46033, MR 0790335
Reference: [6] Nikol'skiĭ, S. M.: Approximation of Functions of Several Variables and Imbedding Theorems, 2nd ed., rev. and suppl.Nauka Moskva (1977), Russian. MR 0506247
Reference: [7] Oinarov, R.: Boundedness and compactness of superposition of fractional integration operators and their applications.In: Function Spaces, Differential Operators and Nonlinear Analysis 2004 Math. Institute, Acad. Sci. Czech Republic (2005), 213-235 (www.math.cas.cz/fsdona2004/oinarov.pdf).
.

Files

Files Size Format View
CzechMathJ_61-2011-1_3.pdf 316.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo