Previous |  Up |  Next

Article

Title: Weakly coercive mappings sharing a value (English)
Author: Soriano, J. M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 1
Year: 2011
Pages: 65-72
Summary lang: English
.
Category: math
.
Summary: Some sufficient conditions are provided that guarantee that the difference of a compact mapping and a proper mapping defined between any two Banach spaces over $\mathbb {K}$ has at least one zero. When conditions are strengthened, this difference has at most a finite number of zeros throughout the entire space. The proof of the result is constructive and is based upon a continuation method. (English)
Keyword: zero point
Keyword: continuation method
Keyword: $C^{1}$-homotopy
Keyword: surjerctive implicit function theorem
Keyword: proper mapping
Keyword: compact mapping
Keyword: coercive mapping
Keyword: Fredholm mapping
MSC: 47J07
MSC: 58C15
MSC: 58C30
MSC: 65H10
MSC: 65J15
idZBL: Zbl 1224.58008
idMR: MR2782759
DOI: 10.1007/s10587-011-0017-y
.
Date available: 2011-05-23T12:30:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141518
.
Reference: [1] Allgower, E. L.: A survey of homotopy methods for smooth mappings.Allgower, Glashoff, and Peitgen (eds.) Springer-Verlag, Berlin (1981), 2-29. Zbl 0461.65037, MR 0644324
Reference: [2] Allgower, E. L., Glashoff, K., (eds.), H. Peitgen: Proceedings of the Conference on Numerical Solution of Nonlinear Equations.Bremen, July 1980, Lecture Notes in Math. 878. Springer-Verlag, Berlin (1981). MR 0644323
Reference: [3] Allgower, E. L., Georg, K.: Numerical Continuation Methods.Springer Series in Computational Mathematics 13, Springer-Verlag, New York (1990). Zbl 0717.65030, MR 1059455
Reference: [4] Alexander, J. C., York, J. A.: Homotopy Continuation Method: numerically implementable topological procedures.Trans. Amer. Math. Soc. 242 (1978), 271-284. MR 0478138, 10.1090/S0002-9947-1978-0478138-5
Reference: [5] Garcia, C. B., Li, T. I.: On the number of solutions to polynomial systems of non-linear equations.SIAM J. Numer. Anal. 17 (1980), 540-546. MR 0584729, 10.1137/0717046
Reference: [6] Garcia, C. B., Zangwill, W. I.: Determining all solutions to certain systems of non-linear equations.Math. Operations Research 4 (1979), 1-14. MR 0543605, 10.1287/moor.4.1.1
Reference: [7] Soriano, J. M.: Global minimum point of a convex function.Appl. Math. Comput. 55 (1993), 213-218. Zbl 0778.65046, MR 1213056, 10.1016/0096-3003(93)90022-7
Reference: [8] Soriano, J. M.: Continuous embeddings and continuation methods.Nonlinear Anal. Theory Methods Appl. 70 (2009), 4118-4121. Zbl 1176.58005, MR 2515328, 10.1016/j.na.2008.08.015
Reference: [9] Zeidler, E.: Nonlinear Functional Analysis and its applications I.Springer-Verlag, New York (1992). MR 0816732
Reference: [10] Zeidler, E.: Applied Functional Analysis.Springer-Verlag, Applied Mathematical Sciences 109, New York (1995). Zbl 0834.46002, MR 1347691, 10.1007/978-1-4612-0821-1_3
.

Files

Files Size Format View
CzechMathJ_61-2011-1_6.pdf 232.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo