Title:
|
Weakly coercive mappings sharing a value (English) |
Author:
|
Soriano, J. M. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
65-72 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Some sufficient conditions are provided that guarantee that the difference of a compact mapping and a proper mapping defined between any two Banach spaces over $\mathbb {K}$ has at least one zero. When conditions are strengthened, this difference has at most a finite number of zeros throughout the entire space. The proof of the result is constructive and is based upon a continuation method. (English) |
Keyword:
|
zero point |
Keyword:
|
continuation method |
Keyword:
|
$C^{1}$-homotopy |
Keyword:
|
surjerctive implicit function theorem |
Keyword:
|
proper mapping |
Keyword:
|
compact mapping |
Keyword:
|
coercive mapping |
Keyword:
|
Fredholm mapping |
MSC:
|
47J07 |
MSC:
|
58C15 |
MSC:
|
58C30 |
MSC:
|
65H10 |
MSC:
|
65J15 |
idZBL:
|
Zbl 1224.58008 |
idMR:
|
MR2782759 |
DOI:
|
10.1007/s10587-011-0017-y |
. |
Date available:
|
2011-05-23T12:30:54Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141518 |
. |
Reference:
|
[1] Allgower, E. L.: A survey of homotopy methods for smooth mappings.Allgower, Glashoff, and Peitgen (eds.) Springer-Verlag, Berlin (1981), 2-29. Zbl 0461.65037, MR 0644324 |
Reference:
|
[2] Allgower, E. L., Glashoff, K., (eds.), H. Peitgen: Proceedings of the Conference on Numerical Solution of Nonlinear Equations.Bremen, July 1980, Lecture Notes in Math. 878. Springer-Verlag, Berlin (1981). MR 0644323 |
Reference:
|
[3] Allgower, E. L., Georg, K.: Numerical Continuation Methods.Springer Series in Computational Mathematics 13, Springer-Verlag, New York (1990). Zbl 0717.65030, MR 1059455 |
Reference:
|
[4] Alexander, J. C., York, J. A.: Homotopy Continuation Method: numerically implementable topological procedures.Trans. Amer. Math. Soc. 242 (1978), 271-284. MR 0478138, 10.1090/S0002-9947-1978-0478138-5 |
Reference:
|
[5] Garcia, C. B., Li, T. I.: On the number of solutions to polynomial systems of non-linear equations.SIAM J. Numer. Anal. 17 (1980), 540-546. MR 0584729, 10.1137/0717046 |
Reference:
|
[6] Garcia, C. B., Zangwill, W. I.: Determining all solutions to certain systems of non-linear equations.Math. Operations Research 4 (1979), 1-14. MR 0543605, 10.1287/moor.4.1.1 |
Reference:
|
[7] Soriano, J. M.: Global minimum point of a convex function.Appl. Math. Comput. 55 (1993), 213-218. Zbl 0778.65046, MR 1213056, 10.1016/0096-3003(93)90022-7 |
Reference:
|
[8] Soriano, J. M.: Continuous embeddings and continuation methods.Nonlinear Anal. Theory Methods Appl. 70 (2009), 4118-4121. Zbl 1176.58005, MR 2515328, 10.1016/j.na.2008.08.015 |
Reference:
|
[9] Zeidler, E.: Nonlinear Functional Analysis and its applications I.Springer-Verlag, New York (1992). MR 0816732 |
Reference:
|
[10] Zeidler, E.: Applied Functional Analysis.Springer-Verlag, Applied Mathematical Sciences 109, New York (1995). Zbl 0834.46002, MR 1347691, 10.1007/978-1-4612-0821-1_3 |
. |