Title:
|
On the number of limit cycles of a generalized Abel equation (English) |
Author:
|
Alkoumi, Naeem |
Author:
|
Torres, Pedro J. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
73-83 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
New results are proved on the maximum number of isolated $T$-periodic solutions (limit cycles) of a first order polynomial differential equation with periodic coefficients. The exponents of the polynomial may be negative. The results are compared with the available literature and applied to a class of polynomial systems on the cylinder. (English) |
Keyword:
|
periodic solution |
Keyword:
|
limit cycle |
Keyword:
|
polynomial nonlinearity |
MSC:
|
34C07 |
MSC:
|
34C25 |
idZBL:
|
Zbl 1224.34097 |
idMR:
|
MR2782760 |
DOI:
|
10.1007/s10587-011-0018-x |
. |
Date available:
|
2011-05-23T12:31:53Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141519 |
. |
Reference:
|
[1] Álvarez, A., Bravo, J.-L., Fernández, M.: The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign.Commun. Pure Appl. Anal. 8 (2009), 1493-1501. MR 2505282, 10.3934/cpaa.2009.8.1493 |
Reference:
|
[2] Álvarez, M. J., Gasull, A., Giacomini, H.: A new uniqueness criterion for the number of periodic orbits of Abel equations.J. Differ. Equations 234 (2007), 161-176. MR 2298969, 10.1016/j.jde.2006.11.004 |
Reference:
|
[3] Álvarez, M. J., Gasull, A., Prohens, R.: On the number of limit cycles of some systems on the cylinder.Bull. Sci. Math. 131 (2007), 620-637. MR 2391338, 10.1016/j.bulsci.2006.04.005 |
Reference:
|
[4] Alwash, M. A. M.: Periodic solutions of polynomial non-autonomous differential equations.Electron. J. Differ. Equ. 2005 (2005), 1-8. Zbl 1075.34514, MR 2162245 |
Reference:
|
[5] Alwash, M. A. M.: Periodic solutions of Abel differential equations.J. Math. Anal. Appl. 329 (2007), 1161-1169. Zbl 1154.34397, MR 2296914, 10.1016/j.jmaa.2006.07.039 |
Reference:
|
[6] Cherkas, L A.: Number of limit cycles of an autonomous second-order system.Differ. Equations 12 (1976), 666-668. |
Reference:
|
[7] Gasull, A., Guillamon, A.: Limit cycles for generalized Abel equations.Int. J. Bifurcation Chaos Appl. Sci. Eng. 16 (2006), 3737-3745. Zbl 1140.34348, MR 2295352, 10.1142/S0218127406017130 |
Reference:
|
[8] Gasull, A., Llibre, J.: Limit cycles for a class of Abel equations.SIAM J. Math. Anal. 21 (1990), 1235-1244. Zbl 0732.34025, MR 1062402, 10.1137/0521068 |
Reference:
|
[9] Gasull, A., Torregrosa, J.: Exact number of limit cycles for a family of rigid systems.Proc. Am. Math. Soc. 133 (2005), 751-758. Zbl 1062.34030, MR 2113924, 10.1090/S0002-9939-04-07542-2 |
Reference:
|
[10] Korman, P., Ouyang, T.: Exact multiplicity results for two classes of periodic equations.J. Math. Anal. Appl. 194 (1995), 763-379. Zbl 0844.34036, MR 1350195, 10.1006/jmaa.1995.1328 |
Reference:
|
[11] Lins-Neto, A.: On the number of solutions of the equation $\sum\nolimits_{j=0}^{n}a_j(t)x^j$, $0\leq t\leq 1$, for which $x(0)=x(1)$.Invent. Math. 59 (1980), 69-76. |
Reference:
|
[12] Nkashama, M. N.: A generalized upper and lower solutions method and multiplicity results for nonlinear first-order ordinary differential equations.J. Math. Anal. Appl. 140 (1989), 381-395. Zbl 0674.34009, MR 1001864, 10.1016/0022-247X(89)90072-3 |
Reference:
|
[13] Pliss, V. A.: Nonlocal Problems of the Theory of Oscillations.Academic Press New York (1966). Zbl 0151.12104, MR 0196199 |
Reference:
|
[14] Sandqvist, A., Andersen, K. M.: On the number of closed solutions to an equation ${\dot x}=f(t,x)$, where $f_{x^n}(t,x)\geq 0$ ($n=1,2, {or} 3$).J. Math. Anal. Appl. 159 (1991), 127-146. MR 1119425, 10.1016/0022-247X(91)90225-O |
. |