[1] Álvarez, A., Bravo, J.-L., Fernández, M.: 
The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Commun. Pure Appl. Anal. 8 (2009), 1493-1501. 
DOI 10.3934/cpaa.2009.8.1493 | 
MR 2505282[2] Álvarez, M. J., Gasull, A., Giacomini, H.: 
A new uniqueness criterion for the number of periodic orbits of Abel equations. J. Differ. Equations 234 (2007), 161-176. 
DOI 10.1016/j.jde.2006.11.004 | 
MR 2298969[4] Alwash, M. A. M.: 
Periodic solutions of polynomial non-autonomous differential equations. Electron. J. Differ. Equ. 2005 (2005), 1-8. 
MR 2162245 | 
Zbl 1075.34514[6] Cherkas, L A.: Number of limit cycles of an autonomous second-order system. Differ. Equations 12 (1976), 666-668.
[11] Lins-Neto, A.: On the number of solutions of the equation $\sum\nolimits_{j=0}^{n}a_j(t)x^j$, $0\leq t\leq 1$, for which $x(0)=x(1)$. Invent. Math. 59 (1980), 69-76.
[13] Pliss, V. A.: 
Nonlocal Problems of the Theory of Oscillations. Academic Press New York (1966). 
MR 0196199 | 
Zbl 0151.12104[14] Sandqvist, A., Andersen, K. M.: 
On the number of closed solutions to an equation ${\dot x}=f(t,x)$, where $f_{x^n}(t,x)\geq 0$ ($n=1,2, {or} 3$). J. Math. Anal. Appl. 159 (1991), 127-146. 
DOI 10.1016/0022-247X(91)90225-O | 
MR 1119425