Previous |  Up |  Next

Article

Title: Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects (English)
Author: Tian, Yuansheng
Author: Chen, Anping
Author: Ge, Weigao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 1
Year: 2011
Pages: 127-144
Summary lang: English
.
Category: math
.
Summary: In this paper, using a fixed point theorem on a convex cone, we consider the existence of positive solutions to the multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects, and obtain multiplicity results for positive solutions. (English)
Keyword: $p$-Laplacian operator
Keyword: boundary value problem
Keyword: impulsive differential equations
Keyword: fixed-point theorem
Keyword: positive solutions
MSC: 34B15
MSC: 34B18
MSC: 34B37
idZBL: Zbl 1224.34090
idMR: MR2782764
DOI: 10.1007/s10587-011-0002-5
.
Date available: 2011-05-23T12:36:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141523
.
Reference: [1] Bai, Z., Ge, W.: Existence of three positive solutions for some second-order boundary value problems.Comput. Math. Appl. 48 (2004), 699-707. Zbl 1066.34019, MR 2105244, 10.1016/j.camwa.2004.03.002
Reference: [2] Chen, L., Sun, J.: Nonlinear boundary value problem of first order impulsive functional differential equations.J. Math. Anal. Appl. 318 (2006), 726-741. Zbl 1102.34052, MR 2215181, 10.1016/j.jmaa.2005.08.012
Reference: [3] Ding, W., Han, M.: Periodic boundary value problem for the second order impulsive functional differential equations.Appl. Math. Comput. 155 (2004), 709-726. Zbl 1102.34324, MR 2078208, 10.1016/S0096-3003(03)00811-7
Reference: [4] Kaufmann, E. R., Kosmatov, N., Raffoul, Y. N.: A second-order boundary value problem with impulsive effects on an unbounded domain.Nonlinear Anal., Theory Methods Appl. 69 (2008), 2924-2929. Zbl 1159.34023, MR 2452102
Reference: [5] Lin, X., Jiang, D.: Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations.J. Math. Anal. Appl. 321 (2006), 501-514. Zbl 1103.34015, MR 2241134, 10.1016/j.jmaa.2005.07.076
Reference: [6] Lee, Y.-H., Liu, X.: Study of singular boundary value problems for second order impulsive differential equations.J. Math. Anal. Appl. 331 (2007), 159-176. Zbl 1120.34018, MR 2305995, 10.1016/j.jmaa.2006.07.106
Reference: [7] Lee, E. K., Lee, Y.-H.: Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equation.Appl. Math. Comput. 158 (2004), 745-759. MR 2095700, 10.1016/j.amc.2003.10.013
Reference: [8] Rachůnková, I., Tomeček, J.: Singular Dirichlet problem for ordinary differential equation with impulses.Nonlinear Anal., Theory Methods Appl. 65 (2006), 210-229. MR 2226265, 10.1016/j.na.2005.09.016
Reference: [9] Rachůnková, I., Tvrdý, M.: Second-order periodic problem with $\varphi $-Laplacian and impulses.Nonlinear Anal., Theory Methods Appl. 63 (2005), 257-266. 10.1016/j.na.2004.09.017
Reference: [10] Su, H., Wei, Z., Wang, B.: The existence of positive solutions for a nonlinear four-point singular boundary value problem with a $p$-Laplacian operator.Nonlinear Anal., Theory Methods Appl. 66 (2007), 2204-2217. Zbl 1126.34017, MR 2311023
Reference: [11] Shen, J., Wang, W.: Impulsive boundary value problems with nonlinear boundary conditions.Nonlinear Anal., Theory Methods Appl. 69 (2008), 4055-4062. Zbl 1171.34309, MR 2463353, 10.1016/j.na.2007.10.036
Reference: [12] Tian, Y., Jiang, D., Ge, W.: Multiple positive solutions of periodic boundary value problems for second order impulsive differential equations.Appl. Math. Comput. 200 (2008), 123-132. Zbl 1156.34019, MR 2421630, 10.1016/j.amc.2007.10.052
Reference: [13] Wang, Y., Hou, C.: Existence of multiple positive solutions for one dimensional $p$-Laplacian.J. Math. Anal. Appl. 315 (2006), 144-153. Zbl 1098.34017, MR 2196536, 10.1016/j.jmaa.2005.09.085
Reference: [14] Zhang, X., Ge, W.: Impulsive boundary value problems involving the one-dimensional $p$-Laplacian.Nonlinear Anal., Theory Methods Appl. 70 (2009), 1692-1701. Zbl 1183.34038, MR 2483590, 10.1016/j.na.2008.02.052
.

Files

Files Size Format View
CzechMathJ_61-2011-1_11.pdf 291.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo