Previous |  Up |  Next

Article

Title: Extreme points of subordination and weak subordination families of harmonic mappings (English)
Author: Qiao, Jinjing
Author: Wang, Xiantao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 1
Year: 2011
Pages: 145-155
Summary lang: English
.
Category: math
.
Summary: The aim of the paper is to discuss the extreme points of subordination and weak subordination families of harmonic mappings. Several necessary conditions and sufficient conditions for harmonic mappings to be extreme points of the corresponding families are established. (English)
Keyword: planar harmonic mapping
Keyword: extreme point
Keyword: subordination
Keyword: weak subordination
Keyword: class $N$
MSC: 30C20
MSC: 30C45
MSC: 30C65
idZBL: Zbl 1224.30111
idMR: MR2782765
DOI: 10.1007/s10587-011-0003-4
.
Date available: 2011-05-23T12:37:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141524
.
Reference: [1] Abu-Muhanna, Y.: On extreme points of subordination families.Proc. Amer. Math. Soc. 87 (1983), 439-443. MR 0684634, 10.1090/S0002-9939-1983-0684634-5
Reference: [2] Abu-Muhanna, Y., Hallenbeck, D. J.: Subordination families and extreme points.Trans. Amer. Math. Soc. 308 (1988), 83-89. Zbl 0651.30019, MR 0946431, 10.1090/S0002-9947-1988-0946431-1
Reference: [3] Dihan, N. A.: Some subordination results and coefficient estimates for certain classes of analytic functions.Mathematica 49 (2007), 3-12. Zbl 1174.30005, MR 2364024
Reference: [4] Duren, P.: Theory of $H^p$ Spaces.Academic Press, New York, San Francisco, London (1970). MR 0268655
Reference: [5] Duren, P.: Univalent Functions.Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1983). Zbl 0514.30001, MR 0708494
Reference: [6] Duren, P.: Harmonic Mappings in the Plane.Cambridge university Press, New York (2004). Zbl 1055.31001, MR 2048384
Reference: [7] Hallenbeck, D. J., Hallenbeck, K. T.: Classes of analytic functions subordinate to convex functions and extreme points.J. Math. Anal. Appl. 282 (2003), 792-800. Zbl 1025.30011, MR 1989687, 10.1016/S0022-247X(03)00257-9
Reference: [8] Hallenbeck, D. J., Macgregor, T. H.: Subordination and extreme-point theory.Pacific J. Math. 50 (1974), 455-468. Zbl 0258.30015, MR 0361035, 10.2140/pjm.1974.50.455
Reference: [9] MacGregor, T. H.: Applications of extreme-point theory to univalent functions.Michigan Math. J. 19 (1972), 361-376. Zbl 0257.30017, MR 0311885, 10.1307/mmj/1029000948
Reference: [10] Muir, S.: Weak subordination for convex univalent harmonic functions.J. Math. Anal. Appl. 348 (2008), 862-871. MR 2446041, 10.1016/j.jmaa.2008.08.015
Reference: [11] Ryff, J. V.: Subordinate $H^p$ functions.Duke Math. J. 33 (1966), 347-354. MR 0192062, 10.1215/S0012-7094-66-03340-0
Reference: [12] Schaubroeck, L. E.: Subordination of planar harmonic functions.Complex Variables 41 (2000), 163-178. Zbl 1020.30021, MR 1760169, 10.1080/17476930008815245
Reference: [13] Srivastava, H. M., Sümer, E. Sevtap: Some applications of a subordination theorem for a class of analytic functions.Appl. Math. Lett. 21 (2008), 394-399. MR 2406520, 10.1016/j.aml.2007.02.032
Reference: [14] Tkaczyńska, K.: On extreme points of subordination families with a convex majorant.J. Math. Anal. Appl. 145 (1990), 216-231. MR 1031186, 10.1016/0022-247X(90)90442-I
Reference: [15] Lin, Z.: Subordination of analytic functions.Chinese Acta. Sci. Natur. Univ. Sunyatseni 29 (1990), 44-48. MR 1075847
.

Files

Files Size Format View
CzechMathJ_61-2011-1_12.pdf 255.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo