Title:
|
Ideal version of Ramsey's theorem (English) |
Author:
|
Filipów, Rafał |
Author:
|
Mrożek, Nikodem |
Author:
|
Recław, Ireneusz |
Author:
|
Szuca, Piotr |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
289-308 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider various forms of Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem which are connected with ideals of subsets of natural numbers. We characterize ideals with properties considered. We show that, in a sense, Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem characterize the same class of ideals. We use our results to show some versions of density Ramsey's theorem (these are similar to generalizations shown in [P. Frankl, R. L. Graham, and V. Rödl: Iterated combinatorial density theorems. J. Combin. Theory Ser. A 54 (1990), 95–111]. (English) |
Keyword:
|
ideal of subsets of natural numbers |
Keyword:
|
Bolzano-Weierstrass theorem |
Keyword:
|
Bolzano-Weierstrass property |
Keyword:
|
ideal convergence |
Keyword:
|
statistical density |
Keyword:
|
statistical convergence |
Keyword:
|
subsequence |
Keyword:
|
monotone sequence |
Keyword:
|
Ramsey's theorem |
MSC:
|
05A17 |
MSC:
|
05D10 |
MSC:
|
11B05 |
MSC:
|
40A35 |
MSC:
|
54A20 |
idZBL:
|
Zbl 1249.05378 |
idMR:
|
MR2905404 |
DOI:
|
10.1007/s10587-011-0073-3 |
. |
Date available:
|
2011-06-06T10:24:28Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141533 |
. |
Reference:
|
[1] Alcántara, D. Meza: Ideals and filters on countable set.PhD thesis Universidad Nacional Autónoma de México (2009). |
Reference:
|
[2] Baumgartner, J. E., Taylor, A. D., Wagon, S.: Structural Properties of Ideals.Diss. Math. 197 (1982). Zbl 0549.03036, MR 0687276 |
Reference:
|
[3] Booth, D.: Ultrafilters on a countable set.Ann. Math. Logic 2 (1970), 1-24. Zbl 0231.02067, MR 0277371, 10.1016/0003-4843(70)90005-7 |
Reference:
|
[4] Burkill, H., Mirsky, L.: Monotonicity.J. Math. Anal. Appl. 41 (1973), 391-410. Zbl 0268.26007, MR 0335714, 10.1016/0022-247X(73)90214-X |
Reference:
|
[5] Farah, I.: Semiselective coideals.Mathematika 45 (1998), 79-103. Zbl 0903.03029, MR 1644345, 10.1112/S0025579300014054 |
Reference:
|
[6] Farah, I.: Analytic Quotients: Theory of Liftings for Quotients over Analytic Ideals on the Integers.Mem. Am. Math. Soc 702 (2000). Zbl 0966.03045, MR 1711328 |
Reference:
|
[7] Filipów, R., Mrożek, N., Recław, I., Szuca, P.: Ideal convergence of bounded sequences.J. Symb. Log. 72 (2007), 501-512. MR 2320288, 10.2178/jsl/1185803621 |
Reference:
|
[8] Filipów, R., Szuca, P.: Density versions of Schur's theorem for ideals generated by submeasures.J. Comb. Theory, Ser. A 117 (2010), 943-956. Zbl 1230.05036, MR 2652104, 10.1016/j.jcta.2009.12.005 |
Reference:
|
[9] Frankl, P., Graham, R. L., Rödl, V.: Iterated combinatorial density theorems.J. Comb. Theory, Ser. A 54 (1990), 95-111. MR 1051781, 10.1016/0097-3165(90)90008-K |
Reference:
|
[10] Kojman, M.: Van der Waerden spaces.Proc. Am. Math. Soc. 130 (2002), 631-635. Zbl 0979.54036, MR 1866012, 10.1090/S0002-9939-01-06116-0 |
Reference:
|
[11] Mazur, K.: $F_\sigma$-ideals and $\omega_1\omega_1^*$-gaps in the Boolean algebras {$P(\omega)/I$}.Fundam. Math. 138 (1991), 103-111. MR 1124539, 10.4064/fm-138-2-103-111 |
Reference:
|
[12] Samet, N., Tsaban, B.: Superfilters, Ramsey theory, and van der Waerden's theorem.Topology Appl. 156 (2009), 2659-2669. Zbl 1231.05272, MR 2561218, 10.1016/j.topol.2009.04.014 |
Reference:
|
[13] Shelah, S.: Proper Forcing. Lecture Notes in Mathematics, Vol. 940.Springer Berlin (1982). MR 0675955, 10.1007/BFb0096536 |
Reference:
|
[14] Solecki, S.: Analytic ideals and their applications.Ann. Pure Appl. Logic 99 (1999), 51-72. Zbl 0932.03060, MR 1708146, 10.1016/S0168-0072(98)00051-7 |
Reference:
|
[15] Todorcevic, S.: Topics in Topology.Lecture Notes in Mathematics, Vol. 1652 Springer Berlin (1997). Zbl 0953.54001, MR 1442262, 10.1007/BFb0096295 |
. |