Previous |  Up |  Next

Article

Title: Adjoint bi-continuous semigroups and semigroups on the space of measures (English)
Author: Farkas, Bálint
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 309-322
Summary lang: English
.
Category: math
.
Summary: For a given bi-continuous semigroup $(T(t))_{t\geq 0}$ on a Banach space $X$ we define its adjoint on an appropriate closed subspace $X^\circ $ of the norm dual $X'$. Under some abstract conditions this adjoint semigroup is again bi-continuous with respect to the weak topology $\sigma (X^\circ ,X)$. We give the following application: For $\Omega $ a Polish space we consider operator semigroups on the space ${\rm C_b}(\Omega )$ of bounded, continuous functions (endowed with the compact-open topology) and on the space ${\rm M}(\Omega )$ of bounded Baire measures (endowed with the weak$^*$-topology). We show that bi-continuous semigroups on ${\rm M}(\Omega )$ are precisely those that are adjoints of bi-continuous semigroups on ${\rm C_b}(\Omega )$. We also prove that the class of bi-continuous semigroups on ${\rm C_b}(\Omega )$ with respect to the compact-open topology coincides with the class of equicontinuous semigroups with respect to the strict topology. In general, if $\Omega $ is not a Polish space this is not the case. (English)
Keyword: not strongly continuous semigroups
Keyword: bi-continuous semigroups
Keyword: adjoint semigroup
Keyword: mixed-topology
Keyword: strict topology
Keyword: one-parameter semigroups on the space of measures
MSC: 46A03
MSC: 47D03
MSC: 47D06
MSC: 47D99
idZBL: Zbl 1249.47021
idMR: MR2905405
DOI: 10.1007/s10587-011-0076-0
.
Date available: 2011-06-06T10:25:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141535
.
Reference: [1] Albanese, A. A., Manco, V., Lorenzi, L.: Mean ergodic theorems for bi-continuous semigroups.Semigroup Forum 82 (2011), 141-171. MR 2753839, 10.1007/s00233-010-9260-z
Reference: [2] Albanese, A. A., Mangino, E.: Trotter-Kato theorems for bi-continuous semigroups and applications to Feller semigroups.J. Math. Anal. Appl. 289 (2004), 477-492. Zbl 1071.47043, MR 2026919, 10.1016/j.jmaa.2003.08.032
Reference: [3] Alber, J.: On implemented semigroups.Semigroup Forum 63 (2001), 371-386. Zbl 1041.47028, MR 1851817, 10.1007/s002330010082
Reference: [4] Alexandroff, A. D.: Additive set-functions in abstract spaces.Mat. Sb. N. Ser. 13 (1943), 169-238. Zbl 0060.13502, MR 0012207
Reference: [5] Cerrai, S.: A Hille-Yosida theorem for weakly continuous semigroups.Semigroup Forum 49 (1994), 349-367. MR 1293091, 10.1007/BF02573496
Reference: [6] Dorroh, J. R., Neuberger, J. W.: Lie generators for semigroups of transformations on a Polish space.Electronic J. Diff. Equ. 1 (1993), 1-7. Zbl 0807.54033, MR 1234797
Reference: [7] Dorroh, J. R., Neuberger, J. W.: A theory of strongly continuous semigroups in terms of Lie generators.J. Funct. Anal. 136 (1996), 114-126. Zbl 0848.22005, MR 1375155, 10.1006/jfan.1996.0023
Reference: [8] Edgar, G. A.: Measurability in a Banach space, II.Indiana Univ. Math. J. 28 (1979), 559-579. Zbl 0418.46034, MR 0542944, 10.1512/iumj.1979.28.28039
Reference: [9] Es-Sarhir, A., Farkas, B.: Perturbation for a class of transition semigroups on the Hölder space $C^\theta_{b, loc}(H)$.J. Math. Anal. Appl. 315 (2006), 666-685. Zbl 1097.47042, MR 2202608, 10.1016/j.jmaa.2005.04.024
Reference: [9] Es-Sarhir, A., Farkas, B.: Perturbation for a class of transition semigroups on the Hölder space $C^\theta_{b, loc}(H)$.J. Math. Anal. Appl. 315 (2006), 666-685. Zbl 1097.47042, MR 2202608, 10.1016/j.jmaa.2005.04.024
.

Files

Files Size Format View
CzechMathJ_61-2011-2_2.pdf 305.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo