Title:
|
Adjoint bi-continuous semigroups and semigroups on the space of measures (English) |
Author:
|
Farkas, Bálint |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
309-322 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a given bi-continuous semigroup $(T(t))_{t\geq 0}$ on a Banach space $X$ we define its adjoint on an appropriate closed subspace $X^\circ $ of the norm dual $X'$. Under some abstract conditions this adjoint semigroup is again bi-continuous with respect to the weak topology $\sigma (X^\circ ,X)$. We give the following application: For $\Omega $ a Polish space we consider operator semigroups on the space ${\rm C_b}(\Omega )$ of bounded, continuous functions (endowed with the compact-open topology) and on the space ${\rm M}(\Omega )$ of bounded Baire measures (endowed with the weak$^*$-topology). We show that bi-continuous semigroups on ${\rm M}(\Omega )$ are precisely those that are adjoints of bi-continuous semigroups on ${\rm C_b}(\Omega )$. We also prove that the class of bi-continuous semigroups on ${\rm C_b}(\Omega )$ with respect to the compact-open topology coincides with the class of equicontinuous semigroups with respect to the strict topology. In general, if $\Omega $ is not a Polish space this is not the case. (English) |
Keyword:
|
not strongly continuous semigroups |
Keyword:
|
bi-continuous semigroups |
Keyword:
|
adjoint semigroup |
Keyword:
|
mixed-topology |
Keyword:
|
strict topology |
Keyword:
|
one-parameter semigroups on the space of measures |
MSC:
|
46A03 |
MSC:
|
47D03 |
MSC:
|
47D06 |
MSC:
|
47D99 |
idZBL:
|
Zbl 1249.47021 |
idMR:
|
MR2905405 |
DOI:
|
10.1007/s10587-011-0076-0 |
. |
Date available:
|
2011-06-06T10:25:15Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141535 |
. |
Reference:
|
[1] Albanese, A. A., Manco, V., Lorenzi, L.: Mean ergodic theorems for bi-continuous semigroups.Semigroup Forum 82 (2011), 141-171. MR 2753839, 10.1007/s00233-010-9260-z |
Reference:
|
[2] Albanese, A. A., Mangino, E.: Trotter-Kato theorems for bi-continuous semigroups and applications to Feller semigroups.J. Math. Anal. Appl. 289 (2004), 477-492. Zbl 1071.47043, MR 2026919, 10.1016/j.jmaa.2003.08.032 |
Reference:
|
[3] Alber, J.: On implemented semigroups.Semigroup Forum 63 (2001), 371-386. Zbl 1041.47028, MR 1851817, 10.1007/s002330010082 |
Reference:
|
[4] Alexandroff, A. D.: Additive set-functions in abstract spaces.Mat. Sb. N. Ser. 13 (1943), 169-238. Zbl 0060.13502, MR 0012207 |
Reference:
|
[5] Cerrai, S.: A Hille-Yosida theorem for weakly continuous semigroups.Semigroup Forum 49 (1994), 349-367. MR 1293091, 10.1007/BF02573496 |
Reference:
|
[6] Dorroh, J. R., Neuberger, J. W.: Lie generators for semigroups of transformations on a Polish space.Electronic J. Diff. Equ. 1 (1993), 1-7. Zbl 0807.54033, MR 1234797 |
Reference:
|
[7] Dorroh, J. R., Neuberger, J. W.: A theory of strongly continuous semigroups in terms of Lie generators.J. Funct. Anal. 136 (1996), 114-126. Zbl 0848.22005, MR 1375155, 10.1006/jfan.1996.0023 |
Reference:
|
[8] Edgar, G. A.: Measurability in a Banach space, II.Indiana Univ. Math. J. 28 (1979), 559-579. Zbl 0418.46034, MR 0542944, 10.1512/iumj.1979.28.28039 |
Reference:
|
[9] Es-Sarhir, A., Farkas, B.: Perturbation for a class of transition semigroups on the Hölder space $C^\theta_{b, loc}(H)$.J. Math. Anal. Appl. 315 (2006), 666-685. Zbl 1097.47042, MR 2202608, 10.1016/j.jmaa.2005.04.024 |
Reference:
|
[9] Es-Sarhir, A., Farkas, B.: Perturbation for a class of transition semigroups on the Hölder space $C^\theta_{b, loc}(H)$.J. Math. Anal. Appl. 315 (2006), 666-685. Zbl 1097.47042, MR 2202608, 10.1016/j.jmaa.2005.04.024 |
. |