Previous |  Up |  Next

Article

Title: Underlying Lie algebras of quadratic Novikov algebras (English)
Author: Chen, Zhiqi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 323-328
Summary lang: English
.
Category: math
.
Summary: Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and the Hamiltonian operators in formal variational calculus. In this note we prove that the underlying Lie algebras of quadratic Novikov algebras are 2-step nilpotent. Moreover, we give the classification up to dimension $10$. (English)
Keyword: Novikov algebra
Keyword: quadratic Novikov algebra
Keyword: underlying Lie algebra
MSC: 17A30
MSC: 17B30
idZBL: Zbl 1249.17004
idMR: MR2905406
DOI: 10.1007/s10587-011-0077-z
.
Date available: 2011-06-06T10:26:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141536
.
Reference: [1] Balinskii, A. A., Novikov, S. P.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras.Sov. Math., Dokl. 32 (1985), 228-231. Zbl 0606.58018, MR 0802121
Reference: [2] Bordemann, M.: Nondegenerate invariant bilinear forms on nonassociative algebras.Acta Math. Univ. Comen., New Ser. 66 (1997), 151-201. Zbl 1014.17003, MR 1620480
Reference: [3] Burde, D.: Classical $r$-matrices and Novikov algebras.Geom. Dedicata 122 (2006), 145-157. Zbl 1118.17001, MR 2295546, 10.1007/s10711-006-9059-y
Reference: [4] Dubrovin, B. A., Novikov, S. P.: Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov-Whitman averaging method.Sov. Math., Dokl. 27 (1983), 665-669. Zbl 0553.35011
Reference: [5] Dubrovin, B. A., Novikov, S. P.: On Poisson brackets of hydrodynamic type.Sov. Math., Dokl. 30 (1984), 651-654. MR 0770656
Reference: [6] Figueroa-O'Farrilla, J. M., Stanciu, S.: On the structure of symmetric self-dual Lie algebras.J. Math. Phys. 37 (1996), 4121-4134. MR 1400838, 10.1063/1.531620
Reference: [7] Gel'fand, I. M., Dikii, L. A.: Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-De Vries equations.Russ. Math. Surv. 30 (1975), 77-113. Zbl 0334.58007, MR 0508337, 10.1070/RM1975v030n05ABEH001522
Reference: [8] Gel'fand, I. M., Dikii, L. A.: A Lie algebra structure in a formal variational calculation.Funct. Anal. Appl. 10 (1976), 16-22. Zbl 0347.49023, MR 0467819, 10.1007/BF01075767
Reference: [9] Gel'fand, I. M., Dorfman, I. Y.: Hamiltonian operators and algebraic structures related to them.Funct. Anal. Appl. 13 (1980), 248-262. Zbl 0437.58009, 10.1007/BF01078363
Reference: [10] Xu, X. P.: Hamiltonian operators and associative algebras with a derivation.Lett. Math. Phys. 33 (1995), 1-6. Zbl 0837.16034, MR 1315250, 10.1007/BF00750806
Reference: [11] Xu, X. P.: Hamiltonian superoperators.J. Phys. A: Math. Gen. 28 (1995), 1681-1698. Zbl 0852.58043, 10.1088/0305-4470/28/6/021
Reference: [12] Xu, X. P.: Variational calculus of supervariables and related algebraic structures.J. Algebra 223 (2000), 396-437. Zbl 1012.37048, MR 1735154, 10.1006/jabr.1999.8064
Reference: [13] Zhu, F. H., Chen, Z. Q.: Novikov algebras with associative bilinear forms.J. Phys. A, Math. Theor. 40 (2007), 14243-14251. Zbl 1127.17002, MR 2438123, 10.1088/1751-8113/40/47/014
.

Files

Files Size Format View
CzechMathJ_61-2011-2_3.pdf 217.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo