Previous |  Up |  Next

Article

Title: Curvature functionals for curves in the equi-affine plane (English)
Author: Verpoort, Steven
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 419-435
Summary lang: English
.
Category: math
.
Summary: After having given the general variational formula for the functionals indicated in the title, the critical points of the integral of the equi-affine curvature under area constraint and the critical points of the full-affine arc-length are studied in greater detail. Notice. An extended version of this article is available on arXiv:0912.4075. (English)
Keyword: curvature functionals
Keyword: variational problems
Keyword: affine curves
MSC: 49K05
MSC: 49K15
MSC: 49Q05
MSC: 53A15
idZBL: Zbl 1249.49028
idMR: MR2905414
DOI: 10.1007/s10587-011-0064-4
.
Date available: 2011-06-06T10:32:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141544
.
Reference: [1] Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Tenth Printing).National Bureau of Standards, Washington (1972). MR 0757537
Reference: [2] Arreaga, G., Capovilla, R., Chryssomalakos, C., Guven, J.: Area-Constrained Planar Elastica.Physical Review E 65 (2002), 14 pages. 10.1103/PhysRevE.65.031801
Reference: [3] Blaschke, W.: Vorlesungen über Differentialgeometrie. I: Elementare Differentialgeometrie.Springer, Berlin (1923).
Reference: [4] Blaschke, W.: Vorlesungen über Differentialgeometrie. II: Affine Differentialgeometrie.Springer, Berlin (1923).
Reference: [5] Blaschke, W.: Vorlesungen über Differentialgeometrie. III: Differentialgeometrie der Kreise und Kugeln.Springer, Berlin (1929).
Reference: [6] Blaschke, W.: Ebene Kinematik (Eine Vorlesung).Teubner, Leipzig (1938).
Reference: [7] Bol, G.: Beantwoording van Prijsvraag 13, 1934.Nieuw Archief voor Wiskunde 20 (1940), 113-162. MR 0001045
Reference: [8] Bottema, O.: Vlakke Krommen met de Affiene Natuurlijke Vergelijking $k = c\wp(s)$.Nieuw Archief voor Wiskunde 21 (1941), 89-100. MR 0017999
Reference: [9] Cartan, É.: Sur un Problème du Calcul des Variations en Géométrie Projective Plane.Matematicheskii Sbornik 34 (1927), 349-364.
Reference: [10] Gălugăreanu, G., Gheorghiu, G. T.: Sur l'Interprétation Géométrique des Invariants Différentiels Fondamentaux en Géométrie Affine et Projective des Courbes Planes.Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie 43 (1941), 69-83. MR 0012877
Reference: [11] Huang, Rongpei: A Note on the Generalized Subaffine Elastica in $\mathbb{R}^2$.Chinese Quarterly Journal of Mathematics. Shuxue Jikan 18 (2003), 88-92. MR 2002097
Reference: [12] Heil, E.: Abschätzungen für einige Affininvarianten konvexer Kurven.Monatshefte für Mathematik {71} (1967), 405-423. Zbl 0153.50902, MR 0230233
Reference: [13] Leichtweiss, K.: The Affine Geometry of Convex Bodies.Johann Ambrosius Barth, Heidelberg (1998). MR 1630116
Reference: [14] Li, An-Min: Variational Formulae for Higher Affine Mean Curvatures.Results in Mathematics 13 (1988), 318-326. MR 0941338, 10.1007/BF03323248
Reference: [15] Li, An-Min, Simon, U., Zhao, Guo-Song: Global Affine Differential Geometry of Hypersurfaces.De Gruyter Expositions in Mathematics 11. Walter de Gruyter, Berlin (1993). MR 1257186
Reference: [16] Mihăilescu, T.: Géométrie Différentielle Affine des Courbes Planes.Czech. Math. J. 9 (1959), 84 265-288. MR 0105704
Reference: [17] Mihăilescu, T.: Sobre la Variación del Arco Afín de las Curvas Planas.Mathematicae Notae 17 (1959/1961), 59-81. MR 0146691
Reference: [18] Schirokow, A. P., Schirokow, P. A.: Affine Differentialgeometrie.B.G. Teubner, Leipzig (1962). Zbl 0106.14703, MR 0150666
Reference: [19] Tutaev, L. K.: Lines and Surfaces in Three-Dimensional Affine Space.Israel Program for Scientific Translations, Jerusalem (1964). MR 0180927
Reference: [20] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis: an Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions.Third Edition, Cambridge University Press (1920). MR 1424469
Reference: [21] Verpoort, S.: Curvature Functionals for Curves in the Equi-Affine Plane (an extended version of the current article).arXiv:0912.4075. MR 2905414
.

Files

Files Size Format View
CzechMathJ_61-2011-2_11.pdf 359.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo