Previous |  Up |  Next

Article

Title: Transferral of entailment in duality theory II: strong dualisability (English)
Author: Gouveia, Maria João
Author: Haviar, Miroslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 401-417
Summary lang: English
.
Category: math
.
Summary: Results saying how to transfer the entailment in certain minimal and maximal ways and how to transfer strong dualisability between two different finite generators of a quasi-variety of algebras are presented. A new proof for a well-known result in the theory of natural dualities which says that strong dualisability of a quasi-variety is independent of the generating algebra is derived. (English)
Keyword: natural duality
Keyword: (strong) dualisability
Keyword: entailment
MSC: 08A35
MSC: 08C15
MSC: 08C20
idZBL: Zbl 1249.08014
idMR: MR2905413
DOI: 10.1007/s10587-011-0063-5
.
Date available: 2011-06-06T10:31:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141543
.
Related article: http://dml.cz/handle/10338.dmlcz/141517
.
Reference: [1] Clark, D. M., Davey, B. A.: Natural Dualities for the Working Algebraist.Cambridge University Press, Cambridge (1998). Zbl 0910.08001, MR 1663208
Reference: [2] Clark, D. M., Idziak, P. M., Sabourin, L. R., Szabó, Cs., Willard, R.: Natural dualities for quasi-varieties generated by a finite commutative ring.Algebra Universalis 46 (2001), 285-320. MR 1835800, 10.1007/PL00000344
Reference: [3] Davey, B. A., Haviar, M.: A schizophrenic operation which aids the efficient transfer of strong dualitites.Houston Math. J. 26 (2000), 215-222. MR 1814235
Reference: [4] Davey, B. A., Haviar, M., Priestley, H. A.: The syntax and semantics of entailment in duality theory.J. Symbolic Logic 60 (1995), 1087-1114. Zbl 0845.08006, MR 1367197, 10.2307/2275875
Reference: [5] Davey, B. A., Haviar, M., Willard, R.: Structural entailment.Algebra Universalis 54 (2005), 397-416. Zbl 1090.08009, MR 2218853, 10.1007/s00012-005-1944-y
Reference: [6] Davey, B. A., Willard, R.: The dualisability of a quasi-variety is independent of the generating algebra.Algebra Universalis 45 (2001), 103-106. Zbl 1039.08006, MR 1809859, 10.1007/s000120050204
Reference: [7] Gouveia, M. J., Haviar, M.: Transferral of entailment in duality theory: dualisability.Czech. Math. J. 61 (2011), 41-63. MR 2782758, 10.1007/s10587-011-0016-z
Reference: [8] Hyndman, J. J.: Strong duality of finite algebras that generate the same quasivariety.Algebra Universalis 51 (2004), 29-34. Zbl 1092.08004, MR 2067149, 10.1007/s00012-004-1847-3
Reference: [9] Pitkethly, J. G., Davey, B. A.: Dualisability: Unary Algebras and Beyond.Springer (2005). Zbl 1085.08001, MR 2161626
Reference: [10] Saramago, M.: Some remarks on dualisability and endodualisability.Algebra Universalis 43 (2000), 197-212. Zbl 1011.08003, MR 1773938, 10.1007/s000120050153
Reference: [11] Saramago, M. J., Priestley, H. A.: Optimal natural dualities: the structure of failsets.Internat. J. Algebra Comput. 12 (2002), 407-436. Zbl 1027.08006, MR 1910686, 10.1142/S0218196702000791
Reference: [12] Willard, R.: New tools for proving dualizability. Dualities, Interpretability and Ordered Structures (Lisbon, 1997).J. Vaz de Carvalho and I. Ferreirim Centro de Álgebra da Universidade de Lisboa (1999), 69-74.
Reference: [13] Zádori, L.: Natural duality via a finite set of relations.Bull. Austral. Math. Soc. 51 (1995), 469-478. MR 1331440, 10.1017/S0004972700014301
.

Files

Files Size Format View
CzechMathJ_61-2011-2_10.pdf 314.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo