Previous |  Up |  Next

Article

Title: On regular endomorphism rings of topological Abelian groups (English)
Author: Abrudan, Horea Florian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 521-530
Summary lang: English
.
Category: math
.
Summary: We extend a result of Rangaswamy about regularity of endomorphism rings of Abelian groups to arbitrary topological Abelian groups. Regularity of discrete quasi-injective modules over compact rings modulo radical is proved. A characterization of torsion LCA groups $A$ for which ${\rm End}_c(A)$ is regular is given. (English)
Keyword: $m$-regular ring
Keyword: discrete module
Keyword: quasi-injective module
Keyword: linearly compact group
Keyword: LCA group
Keyword: local product
MSC: 16E50
MSC: 16S50
MSC: 16W80
MSC: 20K30
MSC: 20K45
MSC: 22B05
idZBL: Zbl 1240.20055
idMR: MR2905420
DOI: 10.1007/s10587-011-0070-6
.
Date available: 2011-06-06T10:39:12Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141550
.
Reference: [1] Abrudan, H. F., Ursul, M.: Boundedness of topological endomorphism rings of torsion Abelian groups.Contr. to Gen. Algebra 17 (2006), 1-8. Zbl 1119.20049, MR 2237800
Reference: [2] Bourbaki, N.: Obshchaya topologia. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva.Izdatel'stvo ``Nauka'', Moscow, 1969 (In Russian). French original: Elements de Mathematique. Topologie Generale. Ch. III--VIII, Hermann. MR 0256328
Reference: [3] Faith, C.: Algebra II---Ring Theory.Springer-Verlag, Berlin-Heidelberg-New York (1976). MR 0427349
Reference: [4] Faith, C., Utumi, Y.: Quasi-injective modules and their endomorphism rings.Arch. Math. 15 (1964), 166-174. Zbl 0131.27502, MR 0166226, 10.1007/BF01589182
Reference: [5] Fuchs, L.: Infinite Abelian Groups.Vol. II, Academic Press, New York (1973). Zbl 0257.20035, MR 0349869
Reference: [6] Johnson, R. E., Wong, E. T.: Quasi-injective modules and irreducible rings.J. Lond. Math. Soc. 36 (1961), 260-268. Zbl 0103.02203, MR 0131445, 10.1112/jlms/s1-36.1.260
Reference: [7] Osofsky, B. L.: Endomorphism rings of quasi-injective modules.Canad. J. Math. 20 (1968), 895-903. Zbl 0162.05101, MR 0231856, 10.4153/CJM-1968-086-3
Reference: [8] Rangaswamy, K. M.: Abelian groups with endomorphic images of special types.J. of Algebra 6 (1969), 271-280. MR 0217180, 10.1016/0021-8693(67)90082-8
Reference: [9] Stroppel, M.: Locally Compact Groups.EMS Textbooks in Mathematics, European Mathematical Society Publishing House, Zurich (2006). Zbl 1102.22005, MR 2226087
Reference: [10] Ursul, M.: Topological Rings Satisfying Compactness Conditions.Mathematics and its Applications, Vol. 549, Kluwer Academic Publishers, Dordrecht-Boston-London (2002). Zbl 1041.16037, MR 1959470
Reference: [11] Utumi, Y.: On quotient rings.Osaka Math. J. 8 (1956), 1-18. Zbl 0070.26601, MR 0078966
Reference: [12] Utumi, Y.: Self-injective rings.J. Algebra 6 (1967), 56-64. Zbl 0161.03803, MR 0209321, 10.1016/0021-8693(67)90013-0
Reference: [13] Warner, S.: Topological Rings.North-Holland, Amsterdam-London-New York-Tokyo (1993). Zbl 0785.13008, MR 1240057
.

Files

Files Size Format View
CzechMathJ_61-2011-2_17.pdf 258.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo