Previous |  Up |  Next

Article

Title: Idempotents and the multiplicative group of some totally bounded rings (English)
Author: Salim, Mohamed A.
Author: Tripe, Adela
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 509-519
Summary lang: English
.
Category: math
.
Summary: In this paper, we extend some results of D. Dolzan {on finite rings} to profinite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property of Mersenne numbers, we construct a family of power $2^{\aleph _0}$ commutative non-isomorphic profinite semiprimitive rings with monothetic group of units. (English)
Keyword: compact ring
Keyword: group of units
Keyword: Jacobson radical
Keyword: left linearly compact ring
Keyword: Mersenne number
Keyword: monothetic group
Keyword: primary ring
Keyword: summable set
Keyword: totally bounded ring
MSC: 16U60
MSC: 16W80
MSC: 22C05
MSC: 22D05
idZBL: Zbl 1240.16049
idMR: MR2905419
DOI: 10.1007/s10587-011-0069-z
.
Date available: 2011-06-06T10:38:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141549
.
Reference: [1] Bourbaki, N.: Elemente der Mathematik. Allgemaine Topologie. Topologische Gruppen. Zahlen und die mit ihnen zusammenhängenden Gruppen und Räume (Russian).Nauka Moskau (1969).
Reference: [2] Bourbaki, N.: Elements de mathematique. Algebre commutative (Russian).Mir Moskau (1971). MR 2272929
Reference: [3] Dantzig, D. Van: Zur topologischen Algebra.Mathematische Annalen 107 (1933), 591.
Reference: [4] Dolžan, D.: Multiplicative sets of idempotents in finite ring.J. Algebra 304 (2006), 271-277. MR 2256389, 10.1016/j.jalgebra.2006.03.022
Reference: [5] Eckstein, F.: Semigroup methods in ring theory.J. Algebra 12 (1969), 177-190. Zbl 0179.33501, MR 0241468, 10.1016/0021-8693(69)90044-1
Reference: [6] Eldridge, K. E., Fischer, I.: DCC rings with a cyclic group of units.Duke Math. J. 34 (1967), 243-248. MR 0214618, 10.1215/S0012-7094-67-03428-X
Reference: [7] Gilmer, R. W., jun.: Finite rings having a cyclic multiplicative group of units.Am. J. Math. 85 (1963), 447-452. Zbl 0113.26501, MR 0154884, 10.2307/2373134
Reference: [8] Kaplansky, I.: Topological rings.Am. J. Math. 69 (1947), 153-183. Zbl 0034.16604, MR 0019596, 10.2307/2371662
Reference: [9] Leptin, H.: Linear kompakte Moduln und Ringe.Math. Z. 62 (1955), 241-267. Zbl 0064.03201, MR 0069811, 10.1007/BF01180634
Reference: [10] Nicholson, W. K., Zhou, Y.: Clean general rings.J. Algebra 291 (2005), 297-311. Zbl 1084.16023, MR 2158525, 10.1016/j.jalgebra.2005.01.020
Reference: [11] Raghavendran, R.: A class of finite rings.Compos. Math. 22 (1970), 49-57. Zbl 0212.37901, MR 0263876
Reference: [12] Serre, J.-P.: Cours d'aritmetique. Le mathematicien (French).Presses Universitaires de France Paris (1970). MR 0255476
Reference: [13] Ursul, M.: Topological Rings Satisfying Compactness Conditions. Mathematics and its Applications. Vol. 549.Kluwer Academic Publishers Dordrecht (2002). MR 1959470
.

Files

Files Size Format View
CzechMathJ_61-2011-2_16.pdf 271.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo