Title:
|
Idempotents and the multiplicative group of some totally bounded rings (English) |
Author:
|
Salim, Mohamed A. |
Author:
|
Tripe, Adela |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
509-519 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we extend some results of D. Dolzan {on finite rings} to profinite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property of Mersenne numbers, we construct a family of power $2^{\aleph _0}$ commutative non-isomorphic profinite semiprimitive rings with monothetic group of units. (English) |
Keyword:
|
compact ring |
Keyword:
|
group of units |
Keyword:
|
Jacobson radical |
Keyword:
|
left linearly compact ring |
Keyword:
|
Mersenne number |
Keyword:
|
monothetic group |
Keyword:
|
primary ring |
Keyword:
|
summable set |
Keyword:
|
totally bounded ring |
MSC:
|
16U60 |
MSC:
|
16W80 |
MSC:
|
22C05 |
MSC:
|
22D05 |
idZBL:
|
Zbl 1240.16049 |
idMR:
|
MR2905419 |
DOI:
|
10.1007/s10587-011-0069-z |
. |
Date available:
|
2011-06-06T10:38:17Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141549 |
. |
Reference:
|
[1] Bourbaki, N.: Elemente der Mathematik. Allgemaine Topologie. Topologische Gruppen. Zahlen und die mit ihnen zusammenhängenden Gruppen und Räume (Russian).Nauka Moskau (1969). |
Reference:
|
[2] Bourbaki, N.: Elements de mathematique. Algebre commutative (Russian).Mir Moskau (1971). MR 2272929 |
Reference:
|
[3] Dantzig, D. Van: Zur topologischen Algebra.Mathematische Annalen 107 (1933), 591. |
Reference:
|
[4] Dolžan, D.: Multiplicative sets of idempotents in finite ring.J. Algebra 304 (2006), 271-277. MR 2256389, 10.1016/j.jalgebra.2006.03.022 |
Reference:
|
[5] Eckstein, F.: Semigroup methods in ring theory.J. Algebra 12 (1969), 177-190. Zbl 0179.33501, MR 0241468, 10.1016/0021-8693(69)90044-1 |
Reference:
|
[6] Eldridge, K. E., Fischer, I.: DCC rings with a cyclic group of units.Duke Math. J. 34 (1967), 243-248. MR 0214618, 10.1215/S0012-7094-67-03428-X |
Reference:
|
[7] Gilmer, R. W., jun.: Finite rings having a cyclic multiplicative group of units.Am. J. Math. 85 (1963), 447-452. Zbl 0113.26501, MR 0154884, 10.2307/2373134 |
Reference:
|
[8] Kaplansky, I.: Topological rings.Am. J. Math. 69 (1947), 153-183. Zbl 0034.16604, MR 0019596, 10.2307/2371662 |
Reference:
|
[9] Leptin, H.: Linear kompakte Moduln und Ringe.Math. Z. 62 (1955), 241-267. Zbl 0064.03201, MR 0069811, 10.1007/BF01180634 |
Reference:
|
[10] Nicholson, W. K., Zhou, Y.: Clean general rings.J. Algebra 291 (2005), 297-311. Zbl 1084.16023, MR 2158525, 10.1016/j.jalgebra.2005.01.020 |
Reference:
|
[11] Raghavendran, R.: A class of finite rings.Compos. Math. 22 (1970), 49-57. Zbl 0212.37901, MR 0263876 |
Reference:
|
[12] Serre, J.-P.: Cours d'aritmetique. Le mathematicien (French).Presses Universitaires de France Paris (1970). MR 0255476 |
Reference:
|
[13] Ursul, M.: Topological Rings Satisfying Compactness Conditions. Mathematics and its Applications. Vol. 549.Kluwer Academic Publishers Dordrecht (2002). MR 1959470 |
. |