Previous |  Up |  Next

Article

Title: Cyclicity of the adjoint of weighted composition operators on the Hilbert space of analytic functions (English)
Author: Kamali, Zahra
Author: Robati, Bahram Khani
Author: Hedayatian, Karim
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 551-563
Summary lang: English
.
Category: math
.
Summary: In this paper, we discuss the hypercyclicity, supercyclicity and cyclicity of the adjoint of a weighted composition operator on a Hilbert space of analytic functions. (English)
Keyword: hypercyclicity
Keyword: supercyclicity
Keyword: cyclicity
Keyword: weighted composition operators
MSC: 47A16
MSC: 47B33
MSC: 47B38
idZBL: Zbl 1243.47022
idMR: MR2905423
DOI: 10.1007/s10587-011-0074-2
.
Date available: 2011-06-06T10:41:51Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141553
.
Reference: [1] Bayart, F., Matheron, E.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179.Cambridge University Press Cambridge (2009). MR 2533318
Reference: [2] Bourdon, P. S., Shapiro, J. H.: Cyclic Phenomena for Composition Operators.Mem. Am. Math. Soc. 596 (1997). Zbl 0996.47032, MR 1396955
Reference: [3] Bourdon, P. S., Shapiro, J. H.: Hypercyclic operators that commute with the Bergman backward shift.Trans. Am. Math. Soc. 352 (2000), 5293-5316. Zbl 0960.47003, MR 1778507, 10.1090/S0002-9947-00-02648-9
Reference: [4] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics.CRC Press Boca Raton (1995). MR 1397026
Reference: [5] Feldman, N. S., Miller, V. G., Miller, T. L.: Hypercyclic and supercyclic cohyponormal operators.Acta Sci. Math. 68 (2002), 303-328. Zbl 0997.47004, MR 1916583
Reference: [6] Forelli, F.: The isometries of $H^{p}$.Can. J. Math. 16 (1964), 721-728. MR 0169081, 10.4153/CJM-1964-068-3
Reference: [7] Gethner, R. M., Shapiro, J. H.: Universal vectors for operators on spaces of holomorphic functions.Proc. Am. Math. Soc. 100 (1987), 281-288. Zbl 0618.30031, MR 0884467, 10.1090/S0002-9939-1987-0884467-4
Reference: [8] Godefroy, G., Shapiro, J. H.: Operators with dense, invariant, cyclic vector manifolds.J. Funct. Anal. 98 (1991), 229-269. Zbl 0732.47016, MR 1111569, 10.1016/0022-1236(91)90078-J
Reference: [9] Kitai, C.: Invariant closed sets for linear operators.Thesis Univ. of Toronto Toronto (1982). MR 2632793
Reference: [10] Rolewicz, S.: On orbits of elements.Stud. Math. 32 (1969), 17-22. Zbl 0174.44203, MR 0241956, 10.4064/sm-32-1-17-22
Reference: [11] Salas, H. N.: Hypercyclic weighted shifts.Trans. Am. Math. Soc. 347 (1995), 993-1004. Zbl 0822.47030, MR 1249890, 10.1090/S0002-9947-1995-1249890-6
Reference: [12] Salas, H. N.: Supercyclicity and weighted shifts.Stud. Math. 135 (1999), 55-74. Zbl 0940.47005, MR 1686371, 10.4064/sm-135-1-55-74
Reference: [13] Shapiro, J. H.: Composition Operators and Classical Function Theory. Tracts in Mathematics.Springer New York (1993). MR 1237406
Reference: [14] Yousefi, B., Haghkhah, S.: Hypercyclicity of special operators on Hilbert function spaces.Czech. Math. J. 57 (2007), 1035-1041. Zbl 1174.47312, MR 2356938, 10.1007/s10587-007-0093-1
Reference: [15] Yousefi, B., Rezaei, H.: Hypercyclic property of weighted composition operators.Proc. Am. Math. Soc. 135 (2007), 3263-3271. Zbl 1129.47010, MR 2322758, 10.1090/S0002-9939-07-08833-8
.

Files

Files Size Format View
CzechMathJ_61-2011-2_20.pdf 286.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo