Previous |  Up |  Next

Article

Title: Moments of vector measures and Pettis integrable functions (English)
Author: Duchoň, Miloslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 541-549
Summary lang: English
.
Category: math
.
Summary: Conditions, under which the elements of a locally convex vector space are the moments of a regular vector-valued measure and of a Pettis integrable function, both with values in a locally convex vector space, are investigated. (English)
Keyword: locally convex vector space
Keyword: vector valued measure
Keyword: Pettis integrable function
Keyword: moments of such measures and functions
MSC: 28B05
MSC: 28B99
MSC: 44A60
MSC: 46G12
idZBL: Zbl 1249.44009
idMR: MR2905422
DOI: 10.1007/s10587-011-0072-4
.
Date available: 2011-06-06T10:40:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141552
.
Reference: [1] Berg, Ch., Christensen, J. P. P., Ressel, P.: Harmonic Analysis on Semigroups.Springer-Verlag, Berlin, Germany (1954). MR 0747302
Reference: [2] Bartle, R. G., Dunford, N., Schwartz, J. C.: Weak compactness and vector measures.Canad. J. Math. 7 (1955), 289-305. Zbl 0068.09301, MR 0070050, 10.4153/CJM-1955-032-1
Reference: [3] Debieve, C.: Integration par rapport a une mesure vectorielle.Ann. de la Societé Scientif. de Bruxelles. 11 (1973), 165-185. Zbl 0268.28004, MR 0318440
Reference: [4] Duchoň, M., Debieve, C.: Moments of vector-valued functions and measures.Tatra Mt. Math. Publ. 42 (2009), 199-210. MR 2543917
Reference: [5] Dunford, N., Schwartz, J. T.: Linear Operators.Part I, Interscience, New York, USA (1966). Zbl 0146.12601
Reference: [6] Hausdorff, F.: Summationsmethoden und Momentenfolgen II.Math. Z. 9 (1921), 280-299. MR 1544467, 10.1007/BF01279032
Reference: [7] Hausdorff, F.: Momentprobleme fuer ein endliches Interval.Math. Z. 16 (1923), 220-248. MR 1544592, 10.1007/BF01175684
Reference: [8] Lewis, D. R.: Integration with respect to vector measures.Pac. J. Math. 33 (1970), 157-165. Zbl 0195.14303, MR 0259064, 10.2140/pjm.1970.33.157
Reference: [9] Lorentz, G. G.: Bernstein Polynomials.Toronto University Press, Toronto, Canada (1953). Zbl 0051.05001, MR 0057370
Reference: [10] Tweddle, I.: Weak compactness in locally convex spaces.Glasgow Math. J. 9 (1968), 123-127. Zbl 0159.41802, MR 0239395, 10.1017/S0017089500000409
Reference: [11] Widder, D. V.: The Laplace Transform.Princeton University Press, Princeton, N.J. (1941). Zbl 0063.08245, MR 0005923
.

Files

Files Size Format View
CzechMathJ_61-2011-2_19.pdf 227.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo