Title:
|
Criterion of $p$-criticality for one term $2n$-order difference operators (English) |
Author:
|
Hasil, Petr |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
47 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
99-109 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate the criticality of the one term $2n$-order difference operators $l(y)_k = \Delta ^n (r_k \Delta ^n y_k)$. We explicitly determine the recessive and the dominant system of solutions of the equation $l(y)_k = 0$. Using their structure we prove a criticality criterion. (English) |
Keyword:
|
one term difference operator |
Keyword:
|
recessive system of solutions |
Keyword:
|
$p$-critical operator |
Keyword:
|
sub/supercritical operator |
MSC:
|
39A10 |
MSC:
|
39A21 |
MSC:
|
39A70 |
MSC:
|
47B25 |
idZBL:
|
Zbl 1249.39001 |
idMR:
|
MR2813536 |
. |
Date available:
|
2011-06-06T14:39:55Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141559 |
. |
Reference:
|
[1] Agarwal, R. P.: Difference equations and inequalities, theory, methods, and applications.Pure Appl. Math. (1992), M. Dekker, New York, Basel, Hong Kong. Zbl 0925.39001, MR 1155840 |
Reference:
|
[2] Ahlbrandt, C. D., Peterson, A. C.: Discrete Hamiltonian systems: Difference equations, continued fractions, and Riccati equations.Kluwer Academic Publishers, Boston, 1996. Zbl 0860.39001, MR 1423802 |
Reference:
|
[3] Bohner, M.: Linear Hamiltonian difference systems: Disconjugacy and Jacobi–type condition.J. Math. Anal. Appl. 199 (1996), 804–826. MR 1386607, 10.1006/jmaa.1996.0177 |
Reference:
|
[4] Bohner, M., Došlý, O.: Disconjugacy and transformations for symplectic systems.Rocky Mountain J. Math. 27 (1997), 707–743. MR 1490271, 10.1216/rmjm/1181071889 |
Reference:
|
[5] Bohner, M., Došlý, O., Kratz, W.: A Sturmian theorem for recessive solutions of linear Hamiltonian difference systems.Appl. Math. Lett. 12 (1999), 101–106. MR 1749755, 10.1016/S0893-9659(98)00156-6 |
Reference:
|
[6] Došlý, O.: Oscillation criteria for higher order Sturm–Liouville difference equations.J. Differ. Equations Appl. 4 (1998), 425–450. MR 1665162, 10.1080/10236199808808154 |
Reference:
|
[7] Došlý, O., Hasil, P.: Critical higher order Sturm–Liouville difference operators.J. Differ. Equations Appl., to appear. |
Reference:
|
[8] Došlý, O., Komenda, J.: Conjugacy criteria and principal solutions of self–adjoint differential equations.Arch. Math. (Brno) 31 (1995), 217–238. MR 1368260 |
Reference:
|
[9] Erbe, L., Yan, P.: Qualitative properties of Hamiltonian difference systems.J. Math. Anal. Appl. 171 (1992), 334–345. Zbl 0768.39001, MR 1194083, 10.1016/0022-247X(92)90347-G |
Reference:
|
[10] Gesztesy, F., Zhao, Z.: Critical and subcritical Jacobi operators defined as Friedrichs extensions.J. Differential Equations 103 (1993), 68–93. Zbl 0807.47004, MR 1218739, 10.1006/jdeq.1993.1042 |
Reference:
|
[11] Kratz, W.: Quadratic functionals in variational analysis and control theory.Mathematical topics, Volume 6, Akademie Verlag, Berlin, 1995. Zbl 0842.49001, MR 1334092 |
Reference:
|
[12] Kratz, W.: Sturm–Liouville difference equations and banded matrices.Arch. Math. (Brno) 36 (2000), 499–505. Zbl 1072.39500, MR 1822819 |
Reference:
|
[13] Kratz, W.: Banded matrices and difference equations.Linear Algebra Appl. 337 (2001), 1–20. Zbl 1002.39028, MR 1856849, 10.1016/S0024-3795(01)00328-7 |
. |