Previous |  Up |  Next

Article

Title: Criterion of $p$-criticality for one term $2n$-order difference operators (English)
Author: Hasil, Petr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 2
Year: 2011
Pages: 99-109
Summary lang: English
.
Category: math
.
Summary: We investigate the criticality of the one term $2n$-order difference operators $l(y)_k = \Delta ^n (r_k \Delta ^n y_k)$. We explicitly determine the recessive and the dominant system of solutions of the equation $l(y)_k = 0$. Using their structure we prove a criticality criterion. (English)
Keyword: one term difference operator
Keyword: recessive system of solutions
Keyword: $p$-critical operator
Keyword: sub/supercritical operator
MSC: 39A10
MSC: 39A21
MSC: 39A70
MSC: 47B25
idZBL: Zbl 1249.39001
idMR: MR2813536
.
Date available: 2011-06-06T14:39:55Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141559
.
Reference: [1] Agarwal, R. P.: Difference equations and inequalities, theory, methods, and applications.Pure Appl. Math. (1992), M. Dekker, New York, Basel, Hong Kong. Zbl 0925.39001, MR 1155840
Reference: [2] Ahlbrandt, C. D., Peterson, A. C.: Discrete Hamiltonian systems: Difference equations, continued fractions, and Riccati equations.Kluwer Academic Publishers, Boston, 1996. Zbl 0860.39001, MR 1423802
Reference: [3] Bohner, M.: Linear Hamiltonian difference systems: Disconjugacy and Jacobi–type condition.J. Math. Anal. Appl. 199 (1996), 804–826. MR 1386607, 10.1006/jmaa.1996.0177
Reference: [4] Bohner, M., Došlý, O.: Disconjugacy and transformations for symplectic systems.Rocky Mountain J. Math. 27 (1997), 707–743. MR 1490271, 10.1216/rmjm/1181071889
Reference: [5] Bohner, M., Došlý, O., Kratz, W.: A Sturmian theorem for recessive solutions of linear Hamiltonian difference systems.Appl. Math. Lett. 12 (1999), 101–106. MR 1749755, 10.1016/S0893-9659(98)00156-6
Reference: [6] Došlý, O.: Oscillation criteria for higher order Sturm–Liouville difference equations.J. Differ. Equations Appl. 4 (1998), 425–450. MR 1665162, 10.1080/10236199808808154
Reference: [7] Došlý, O., Hasil, P.: Critical higher order Sturm–Liouville difference operators.J. Differ. Equations Appl., to appear.
Reference: [8] Došlý, O., Komenda, J.: Conjugacy criteria and principal solutions of self–adjoint differential equations.Arch. Math. (Brno) 31 (1995), 217–238. MR 1368260
Reference: [9] Erbe, L., Yan, P.: Qualitative properties of Hamiltonian difference systems.J. Math. Anal. Appl. 171 (1992), 334–345. Zbl 0768.39001, MR 1194083, 10.1016/0022-247X(92)90347-G
Reference: [10] Gesztesy, F., Zhao, Z.: Critical and subcritical Jacobi operators defined as Friedrichs extensions.J. Differential Equations 103 (1993), 68–93. Zbl 0807.47004, MR 1218739, 10.1006/jdeq.1993.1042
Reference: [11] Kratz, W.: Quadratic functionals in variational analysis and control theory.Mathematical topics, Volume 6, Akademie Verlag, Berlin, 1995. Zbl 0842.49001, MR 1334092
Reference: [12] Kratz, W.: Sturm–Liouville difference equations and banded matrices.Arch. Math. (Brno) 36 (2000), 499–505. Zbl 1072.39500, MR 1822819
Reference: [13] Kratz, W.: Banded matrices and difference equations.Linear Algebra Appl. 337 (2001), 1–20. Zbl 1002.39028, MR 1856849, 10.1016/S0024-3795(01)00328-7
.

Files

Files Size Format View
ArchMathRetro_047-2011-2_4.pdf 482.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo