Previous |  Up |  Next

Article

Title: Uncountably many solutions of a system of third order nonlinear differential equations (English)
Author: Liu, Min
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 3
Year: 2011
Pages: 369-389
Summary lang: English
.
Category: math
.
Summary: In this paper, we aim to study the global solvability of the following system of third order nonlinear neutral delay differential equations $$ \aligned & \frac{d}{dt}\Big\{r_i(t)\frac{d}{dt}\Big[\lambda_i(t)\frac{d}{dt} \Big(x_i(t)-f_i(t,x_1(t-\sigma_{i1}),x_2(t-\sigma_{i2}), x_3(t-\sigma_{i3}))\Big)\Big]\Big\} \cr & \qquad \quad + \frac{d}{dt}\Big[r_i(t)\frac{d}{dt}g_i(t,x_1(p_{i1}(t)), x_2(p_{i2}(t)),x_3(p_{i3}(t)))\Big] \cr & \qquad \quad + \frac{d}{dt}h_i(t,x_1(q_{i1}(t)),x_2(q_{i2}(t)), x_3(q_{i3}(t))) \cr & = l_i(t,x_1(\eta_{i1}(t)),x_2(\eta_{i2}(t)),x_3(\eta_{i3}(t))), \quad t\ge t_0,\quad i\in \{1,2,3\} \endaligned $$ in the following bounded closed and convex set $$ \aligned \Omega(a,b)=\Big\{x(t)=\big(x_1(t),x_2(t),x_3(t)\big)\in C([t_0,+\infty),\Bbb{R}^3):a(t)\le x_i(t)\le b(t), \qquad \forall\, t\geq t_0, i\in\{1,2,3\}\Big\}, \qquad \endaligned $$ where $\sigma_{ij}>0$, $r_i,\lambda_i,a,b\in C([t_0,+\infty),\Bbb{R}^{+})$, $f_i,g_i,h_i,l_i\in C([t_0,+\infty)\times\Bbb{R}^3,\Bbb{R})$, \newline $p_{ij},q_{ij},\eta_{ij}\in C([t_0,+\infty),\Bbb{R})$ for $i,j\in\{1,2,3\}$. By applying the Krasnoselskii fixed point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and the Banach contraction principle, four existence results of uncountably many bounded positive solutions of the system are established. (English)
Keyword: system of third order nonlinear neutral delay differential equations
Keyword: contraction mapping
Keyword: completely continuous mapping
Keyword: condensing mapping
Keyword: uncountably many bounded positive solutions
MSC: 34C10
MSC: 34K15
idZBL: Zbl 1249.34199
idMR: MR2843230
.
Date available: 2011-08-15T19:16:12Z
Last updated: 2013-10-14
Stable URL: http://hdl.handle.net/10338.dmlcz/141609
.
Reference: [1] Agarwal R.P., O'Regan D., Saker S.H.: Oscillation criteria for second-order nonlinear neutral delay dynamic equations.J. Math. Anal. Appl. 300 (2004), 203–217. Zbl 1062.34068, MR 2100247, 10.1016/j.jmaa.2004.06.041
Reference: [2] Erbe L.H., Kong W.K., Zhang B.G.: Oscillatory Theory for Functional Differential Equations.Marcel Dekker, New York, 1995.
Reference: [3] El-Metwally H., Kulenovic M.R.S., Hadziomerspahic S.: Nonoscillatory solutions for system of neutral delay equation.Nonlinear Anal. 54 (2003), 63–81. Zbl 1029.34057, MR 1978965, 10.1016/S0362-546X(03)00044-0
Reference: [4] Hanuštiaková L'., Olach R.: Nonoscillatory bounded solutions of neutral differential systems.Nonlinear Anal. 68 (2008), 1816–1824. Zbl 1147.34350, MR 2388896, 10.1016/j.na.2007.01.014
Reference: [5] Islam M.N., Raffoul Y.N.: Periodic solutions of neutral nonlinear system of differential equations with functional delay.J. Math. Anal. Appl. 331 (2007), 1175–1186. Zbl 1118.34057, MR 2313707, 10.1016/j.jmaa.2006.09.030
Reference: [6] Levitan B.M.: Some problems of the theory of almost periodic functions I.Uspekhi Mat. Nauk 2(5) (1947), 133–192. MR 0027358
Reference: [7] Liu Z., Gao H.Y., Kang S.M., Shim S.H.: Existence and Mann iterative approximations of nonoscillatory solutions of nth-order neutral delay differential equations.J. Math. Anal. Appl. 329 (2007), 515–529. Zbl 1116.34051, MR 2306819, 10.1016/j.jmaa.2006.06.079
Reference: [8] Lin X.Y.: Oscillatory of second-order nonlinear neutral differential equations.J. Math. Anal. Appl. 309 (2005), 442–452. MR 2154127, 10.1016/j.jmaa.2004.08.023
Reference: [9] Parhi N., Rath R.N.: Oscillation critiria for forced first order neutral differential equations with variable coefficients.J. Math. Anal. Appl. 256 (2001), 525–541. MR 1821755, 10.1006/jmaa.2000.7315
Reference: [10] Sadovskii B.N.: A fixed point principle.Funct. Anal. Appl. 1 (1967), 151–153. MR 0211302, 10.1007/BF01076087
Reference: [11] Yu Y., Wang H.: Nonoscillatory solutions of second-order nonlinear neutral delay equations.J. Math. Anal. Appl. 311 (2005), 445–456. Zbl 1089.34053, MR 2168408, 10.1016/j.jmaa.2005.02.055
Reference: [12] Zhou Y.: Existence for nonoscillatory solutions of second-order nonlinear differential equations.J. Math. Anal. Appl. 331 (2007), 91–96. Zbl 1111.34049, MR 2305990, 10.1016/j.jmaa.2006.08.048
Reference: [13] Zhang W.P., Feng W., Yan J.R., Song J.S.: Existence of nonoscillatory solutions of first-order linear neutral delay differential equations.Compu. Math. Appl. 49 (2005), 1021–1027. Zbl 1087.34539, MR 2141246
Reference: [14] Zhou Y., Zhang B.G.: Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients.Appl. Math. Lett. 15 (2002), 867–874. Zbl 1025.34065, MR 1920988, 10.1016/S0893-9659(02)00055-1
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-3_5.pdf 277.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo