Previous |  Up |  Next

Article

Title: Characterization of power digraphs modulo $n$ (English)
Author: Ahmad, Uzma
Author: Husnine, Syed
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 3
Year: 2011
Pages: 359-367
Summary lang: English
.
Category: math
.
Summary: A power digraph modulo $n$, denoted by $G(n,k)$, is a directed graph with $Z_{n}=\{0,1,\dots, n-1\}$ as the set of vertices and $E=\{(a,b): a^{k}\equiv b\pmod n\}$ as the edge set, where $n$ and $k$ are any positive integers. In this paper we find necessary and sufficient conditions on $n$ and $k$ such that the digraph $G(n,k)$ has at least one isolated fixed point. We also establish necessary and sufficient conditions on $n$ and $k$ such that the digraph $G(n,k)$ contains exactly two components. The primality of Fermat number is also discussed. (English)
Keyword: iteration digraph
Keyword: isolated fixed points
Keyword: Charmichael lambda function
Keyword: Fermat numbers
Keyword: Regular digraphs
MSC: 05C20
MSC: 11A07
MSC: 11A15
MSC: 11A51
MSC: 20K01
idZBL: Zbl 1249.11002
idMR: MR2843229
.
Date available: 2011-08-15T19:13:32Z
Last updated: 2013-10-14
Stable URL: http://hdl.handle.net/10338.dmlcz/141608
.
Reference: [1] Wilson B.: Power digraphs modulo $n$.Fibonacci Quart. 36 (1998), 229–239. Zbl 0936.05049, MR 1627384
Reference: [2] Lucheta C., Miller E., Reiter C.: Digraphs from powers modulo $p$.Fibonacc Quart. 34 (1996), 226–239. Zbl 0855.05067, MR 1390409
Reference: [3] Burton D.M.: Elementary Number Theory.McGraw-Hill, 2007. Zbl 1084.11001
Reference: [4] Chartrand G., Oellermann O.R.: Applied and Algorithmic Graph Theory.McGraw-Hill, New York, 1993. MR 1211413
Reference: [5] Kramer-Miller J.: Structural properties of power digraphs modulo $n$.in Proceedings of the 2009 Midstates Conference for Undergraduate Research in Computer Science and Mathematics, Oberlin, Ohio, 2009, pp. 40–49.
Reference: [6] Ellson J., Gansner E., Koutsofios L., North S.C., Woodhull G.: Graphviz - open source graph drawing tools.version $2.26.3$, http://www.graphviz.org. Zbl 1054.68583
Reference: [7] Somer L., Křížek M.: On a connection of number theory with graph theory.Czechoslovak Math. J. 54 (2004), 465–485. MR 2059267, 10.1023/B:CMAJ.0000042385.93571.58
Reference: [8] Somer L., Křížek M.: Structure of digraphs associated with quadratic congruences with composite moduli.Discrete Math. 306 (2006), 2174–2185. MR 2255611, 10.1016/j.disc.2005.12.026
Reference: [9] Somer L., Křížek M.: On semi-regular digraphs of the congruence $x^{k}\equiv y \pmod n$.Comment. Math. Univ. Carolin. 48 (2007), no. 1, 41–58. MR 2338828
Reference: [10] Somer L., Křížek M.: On symmetric digraphs of the congruence $x^{k}\equiv y \pmod n$.Discrete Math. 309 (2009), 1999–2009. 10.1016/j.disc.2008.04.009
Reference: [11] Szalay L.: A discrete iteration in number theory.BDTF Tud. Közl. 8 (1992), 71–91. Zbl 0801.11011
Reference: [12] MATLAB,: The language of technical computing.version 7.0.0.19920 (R14).
Reference: [13] Deo N.: Graph theory with Application to Engineering and Computer Sciences.Prentice-Hall of India private Limited, 1990. MR 0360322
Reference: [14] Carmichael R.D.: Note on a new number theory function.Bull. Amer. Math. Soc. 16 (1910), 232–238. MR 1558896, 10.1090/S0002-9904-1910-01892-9
Reference: [15] Husnine S.M., Ahmad U., Somer L.: On symmetries of power digraphs.Utilitas Mathematica(to appear). MR 2840802
Reference: [16] Skowronek-Kaziów J.: Properties of digraphs connected with some congruences relations.Czechoslovak Math. J. 59 (2009), 39–49. MR 2486614, 10.1007/s10587-009-0003-9
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-3_4.pdf 320.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo