Previous |  Up |  Next

Article

Title: Some algebraic properties of hypergraphs (English)
Author: Emtander, Eric
Author: Mohammadi, Fatemeh
Author: Moradi, Somayeh
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 577-607
Summary lang: English
.
Category: math
.
Summary: We consider Stanley-Reisner rings $k[x_1,\ldots ,x_n]/I(\mathcal {H})$ where $I(\mathcal {H})$ is the edge ideal associated to some particular classes of hypergraphs. For instance, we consider hypergraphs that are natural generalizations of graphs that are lines and cycles, and for these we compute the Betti numbers. We also generalize some known results about chordal graphs and study a weak form of shellability. (English)
Keyword: Betti numbers
Keyword: chordal hypergraphs
Keyword: connectivity
Keyword: homologically connected hypergraphs
Keyword: hypercycles
Keyword: line hypergraphs
Keyword: shellability
MSC: 05C25
MSC: 05C40
MSC: 05C65
MSC: 05C75
MSC: 13D02
MSC: 13F20
MSC: 13H10
idZBL: Zbl 1249.05325
idMR: MR2853077
DOI: 10.1007/s10587-011-0031-0
.
Date available: 2011-09-22T14:28:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141623
.
Reference: [1] Berge, C.: Hypergraphs: Combinatorics of finite sets.{North-Holland} (1989). Zbl 0674.05001, MR 1013569
Reference: [2] Bruns, W., Herzog, J.: Cohen-Macaulay rings, revised ed.Cambridge University Press (1998). MR 1251956
Reference: [3] Dochstermann, A., Engström, A.: Algebraic properties of edge ideals via combinatorial topology.arXiv:0810.4120 (2008). MR 2992613
Reference: [4] Eagon, J. A., Reiner, V.: Resolutions of Stanley-Reisner rings and Alexander Duality.J. Pure Appl. Algebra 130 (1998), 265-275. Zbl 0941.13016, MR 1633767, 10.1016/S0022-4049(97)00097-2
Reference: [5] Eisenbud, D.: Commutative algebra with a view toward algebraic geometry.Graduate Texts in Mathematics 150, Springer (1995). Zbl 0819.13001, MR 1322960
Reference: [6] Eliahou, S., Kervaire, M.: Minimal resolutions of some monomial ideals.J. Algebra 129 (1990), 1-25. Zbl 0701.13006, MR 1037391, 10.1016/0021-8693(90)90237-I
Reference: [7] Emtander, E.: Betti numbers of hypergraphs.Communications in algebra 37 (2009), 1545-1571. Zbl 1191.13015, MR 2526320, 10.1080/00927870802098158
Reference: [8] Emtander, E.: A class of hypergraphs that generalizes chordal graphs.arXiv:0803.2150 (2008). MR 2603461
Reference: [9] Faridi, S.: The facet ideal of a simplicial complex.Manuscripta Math. 242 (2002), 92-108. Zbl 1005.13006, MR 1935027
Reference: [10] Faridi, S.: Cohen-Macaulay Properties of Square-Free Monomial Ideals.J. Combin. Theory Ser. A 109 (2005), 299-329. Zbl 1101.13015, MR 2121028, 10.1016/j.jcta.2004.09.005
Reference: [11] Francisco, C. A., Tuyl, A. Van: Sequentially cohen-macaulay edge ideals.Proc. Amer. Math. Soc. (2007), 2327-2337. MR 2302553
Reference: [12] Francisco, Christopher A., Hà, H. T., Tuyl, A. Van: Splittings of monomial ideals.arXiv:0807.2185 (2008). MR 2515396
Reference: [13] Fröberg, R.: Rings with monomial relations having linear resolutions.J. Pure Appl. Algebra 38 (1985), 235-241. MR 0814179, 10.1016/0022-4049(85)90011-8
Reference: [14] Fröberg, R.: On Stanley-Reisner rings.Topics in Algebra 26 (1990). MR 1171260
Reference: [15] Hà, H. T., Tuyl, A. Van: Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers.arXiv:math/0606539 (2006). MR 2375493
Reference: [16] Hà, H. T., Tuyl, A. Van: Splittable ideals and resolutions of monomial ideals.J. Algebra 309 (2007), 405-425. MR 2301246, 10.1016/j.jalgebra.2006.08.022
Reference: [17] Herzog, J., Hibi, T., Zheng, X.: Cohen-Macaulay chordal graphs.arXiv:math/0407375v1 (2004). MR 2231097
Reference: [18] Herzog, J., Hibi, T., Zheng, X.: Dirac's theorem on chordal graphs and Alexander duality.European Journal of Combinatorics 25 (2004). Zbl 1062.05075, MR 2083448, 10.1016/j.ejc.2003.12.008
Reference: [19] Jacques, S.: Betti Numbers of Graph Ideals.Ph.D. thesis, University of Sheffield, 2004, arXiv:math/0410107.
Reference: [20] Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra.Springer (2005). Zbl 1090.13001, MR 2110098
Reference: [21] Morey, S., Reyes, E., Villarreal, R. H.: Cohen-Macaulay, Shellable and unmixed clutters with a perfect matching of König type.arXiv:0708.3111v3 (2007). MR 2400742
Reference: [22] Villarreal, R. H.: Cohen-Macaulay graphs.Manuscripta Math. 66 (1990), 277-293. Zbl 0737.13003, MR 1031197, 10.1007/BF02568497
Reference: [23] Zheng, X.: Resolutions of facet ideals.Comm. Algebra 32 (2004), 2301-2324. Zbl 1089.13014, MR 2100472, 10.1081/AGB-120037222
.

Files

Files Size Format View
CzechMathJ_61-2011-3_1.pdf 421.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo