Previous |  Up |  Next

Article

Title: Dual spaces of local Morrey-type spaces (English)
Author: Gogatishvili, Amiran
Author: Mustafayev, Rza
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 609-622
Summary lang: English
.
Category: math
.
Summary: In this paper we show that associated spaces and dual spaces of the local Morrey-type spaces are so called complementary local Morrey-type spaces. Our method is based on an application of multidimensional reverse Hardy inequalities. (English)
Keyword: local Morrey-type spaces
Keyword: complementary local Morrey-type spaces
Keyword: associated spaces
Keyword: dual spaces
Keyword: multidimensional reverse Hardy inequalities
MSC: 26D15
MSC: 46E30
idZBL: Zbl 1249.46020
idMR: MR2853078
DOI: 10.1007/s10587-011-0034-x
.
Date available: 2011-09-22T14:29:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141625
.
Reference: [1] Burenkov, V. I., Guliyev, H. V.: Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces.Stud. Math. 163 (2004), 157-176. MR 2047377, 10.4064/sm163-2-4
Reference: [2] Burenkov, V. I., Guliyev, H. V., Guliyev, V. S.: On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces.The Interaction of Analysis and Geometry. International School-Conference on Analysis and Geometry, Novosibirsk, Russia, August 23--September 3, 2004 American Mathematical Society (AMS) Providence Contemporary Mathematics 424 (2007), 17-32. MR 2316329
Reference: [3] Burenkov, V. I., Guliyev, H. V., Guliyev, V. S.: Necessary and sufficient conditions for boundedness of fractional maximal operators in local Morrey-type spaces.J. Comput. Appl. Math. 208 (2007), 280-301. MR 2347750, 10.1016/j.cam.2006.10.085
Reference: [4] Burenkov, V. I., Guliyev, H. V., Tararykova, T. V., Serbetci, A.: Necessary and sufficient conditions for the boundedness of genuine singular integral operators in the local Morrey-type spaces.Dokl. Math. 78 (2008), 651-654 Translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 422 (2008), 11-14. MR 2475077, 10.1134/S1064562408050025
Reference: [5] Burenkov, V. I., Guliyev, V. S.: Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces.Potential Anal. 30 (2009), 211-249. Zbl 1171.42003, MR 2480959, 10.1007/s11118-008-9113-5
Reference: [6] Burenkov, V. I., Gogatishvili, A., Guliyev, V. S., Mustafayev, R. Ch.: Boundedness of the fractional maximal operator in Morrey-type spaces.Complex Var. Elliptic Equ. 55 (2010), 739-758. MR 2674862
Reference: [7] Evans, W. D., Gogatishvili, A., Opic, B.: The reverse Hardy inequality with measures.Math. Inequal. Appl. 11 (2008), 43-74. Zbl 1136.26004, MR 2376257
Reference: [8] Gogatishvili, A., Mustafayev, R.: The multidimensional reverse Hardy inequalities.Math. Inequal. & Appl. 14 (2011) (to appear) Preprint, Institute of Mathematics, AS CR, Prague 2009-5-27. Available at http://www.math.cas.cz/preprint/pre-179.pdf. MR 2853078
Reference: [9] Guliyev, V. S.: Integral operators on function spaces on the homogeneous groups and on domains in $\Bbb R^n$.Doctor's degree dissertation Mat. Inst. Steklov Moscow (1994), Russian.
Reference: [10] Guliyev, V. S.: Function Spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups. Some Applications.Baku (1999), Russian.
Reference: [11] Guliyev, V. S., Mustafayev, R. Ch.: Integral operators of potential type in spaces of homogeneous type.Dokl. Math. 55 (1997), 427-429 Translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 354 (1997), 730-732. MR 1473130
Reference: [12] Guliyev, V. S., Mustafayev, R. Ch.: Fractional integrals on spaces of homogeneous type.Anal. Math. 24 (1998), 1810-200 Russian.
.

Files

Files Size Format View
CzechMathJ_61-2011-3_2.pdf 281.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo