Previous |  Up |  Next

Article

Title: A class of tight framelet packets (English)
Author: Lu, Da-Yong
Author: Fan, Qi-Bin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 623-639
Summary lang: English
.
Category: math
.
Summary: This paper obtains a class of tight framelet packets on $L^2(\mathbb R^d)$ from the extension principles and constructs the relationships between the basic framelet packets and the associated filters. (English)
Keyword: wavelet frames
Keyword: framelet packets
Keyword: framelets
Keyword: extension principles
MSC: 42C15
MSC: 42C40
idZBL: Zbl 1249.42021
idMR: MR2853079
DOI: 10.1007/s10587-011-0035-9
.
Date available: 2011-09-22T14:31:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141626
.
Reference: [1] Behera, B.: Multiwavelet packets and frame packets of $L^2(\mathbb R^d)$.Proc. Ind. Acad. Sci., Math. Sci. 111 (2001), 439-463. MR 1923985, 10.1007/BF02829617
Reference: [2] Benedetto, J. J., Treiber, O. M.: Wavelet frames: multiresolution analysis and extension principles.In: L. Debnath, ed., Wavelet Transforms and Time-Frequency Signal Analysis, Birkhäuser (2001), 3-36. Zbl 1036.42032, MR 1826007
Reference: [3] Boor, C., DeVore, R. A., Ron, A.: On the construction of multivariate (pre) wavelets.Construct. Approx. 9 (1993), 123-166. Zbl 0773.41013, MR 1215767, 10.1007/BF01198001
Reference: [4] Chen, D.: On the splitting trick and wavelet frame packets.SIAM J. Math. Anal. 4 (2000), 726-739. Zbl 0966.42024, MR 1745145, 10.1137/S0036141097323333
Reference: [5] Chen, Q. J., Cheng, Z. X.: A study on compactly supported orthogonal vector-valued wavelets and wavelet packets.Chaos, Solitons and Fractals 31 (2007), 1024-1034. Zbl 1142.42014, MR 2262193, 10.1016/j.chaos.2006.03.097
Reference: [6] Christensen, O.: An Introduction to Frames and Riesz Bases.Birkhäuser, Boston (2003). Zbl 1017.42022, MR 1946982
Reference: [7] Chui, C. R., Li, C.: Non-orthogonal wavelet packets.SIAM J. Math. Anal. 24 (1993), 712-738. MR 1215434, 10.1137/0524044
Reference: [8] Cohen, A., Daubechies, I.: On the instability of arbitrary biorthogonal wavelet packets.SIAM J. Math. Anal. 24 (1993), 1340-1354. MR 1234020, 10.1137/0524077
Reference: [9] Coifman, R. R., Meyer, Y., Wickerhauser, M. V.: Size properties of wavelet packets.In: M. B. Ruskai et al., eds., Wavelets and Their Applications. Jones and Bartlett, Boston (1992), 453-470. Zbl 0822.42019, MR 1187353
Reference: [10] Coifman, R. R., Meyer, Y., Wickerhauser, M. V.: Wavelet analysis and signal processing.In: M. B. Ruskai et al., eds., Wavelets and Their Applications. Jones and Bartlett, Boston (1992), 153-178. Zbl 0792.94004, MR 1187341
Reference: [11] Daubechies, I., Han, B.: Pairs of dual wavelet frames from any two refinable functions.Constr. Approx. 20 (2004), 325-352. Zbl 1055.42025, MR 2057532, 10.1007/s00365-004-0567-4
Reference: [12] Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames.Appl. Comput. Harmon. Anal. 1 (2003), 1-46. Zbl 1035.42031, MR 1971300, 10.1016/S1063-5203(02)00511-0
Reference: [13] Han, B.: Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix.J. Comput. Appl. Math. 155 (2003), 43-67. Zbl 1021.42020, MR 1992289, 10.1016/S0377-0427(02)00891-9
Reference: [14] Han, B.: Dual multiwavelet frames with high balancing order and compact fast frame transform.Appl. Comput. Harmon. Anal. 26 (2009), 14-42. Zbl 1154.42007, MR 2467933, 10.1016/j.acha.2008.01.002
Reference: [15] Han, B.: On dual wavelet tight frames.Appl. Comput. Harmon. Anal. 4 (1997), 380-413. Zbl 0880.42017, MR 1474096, 10.1006/acha.1997.0217
Reference: [16] Han, B., Mo, Q.: Symmetric MRA tight wavelet frames with three generators and high vanishing moments.Appl. Comput. Harmon. Anal. 18 (2005), 67-93. Zbl 1057.42026, MR 2110513, 10.1016/j.acha.2004.09.001
Reference: [17] Long, R., Chen, W.: Wavelet basis packets and wavelet frame packets.J. Fourier Anal. Appl. 3 (1997), 239-256. Zbl 0882.42022, MR 1448338, 10.1007/BF02649111
Reference: [18] Ron, A., Shen, Z.: Affine systems in $L_2(\mathbb R^d)$: the analysis of the analysis operator.J. Functional Anal. Appl. 148 (1997), 408-447. MR 1469348, 10.1006/jfan.1996.3079
Reference: [19] Ron, A., Shen, Z.: Compactly supported tight affine spline frames in $L_2(\mathbb R^d)$.Math. Comput. 67 (1998), 191-207. MR 1433269, 10.1090/S0025-5718-98-00898-9
Reference: [20] Selesnick, I. W., Abdelnour, A. F.: Symmetric wavelet tight frames with two generators.Appl. Comput. Harmon. Anal. 17 (2004), 211-225. Zbl 1066.42027, MR 2082159, 10.1016/j.acha.2004.05.003
Reference: [21] Shen, Z.: Nontensor product wavelet packets in $L^2(\mathbb R^s)$.SIAM J. Math. Anal. 26 (1995), 1061-1074. MR 1338374, 10.1137/S0036141093243642
.

Files

Files Size Format View
CzechMathJ_61-2011-3_3.pdf 293.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo