Previous |  Up |  Next

Article

Title: Representations of étale Lie groupoids and modules over Hopf algebroids (English)
Author: Kališnik, Jure
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 653-672
Summary lang: English
.
Category: math
.
Summary: The classical Serre-Swan's theorem defines an equivalence between the category of vector bundles and the category of finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its Hopf algebroid that are of finite type and of constant rank. Both of these constructions are functorially defined on the Morita category of étale Lie groupoids and we show that the given correspondence represents a natural equivalence between them. (English)
Keyword: étale Lie groupoids
Keyword: Hopf algebroids
Keyword: representations
Keyword: modules
Keyword: equivalence
Keyword: Morita category
MSC: 16D40
MSC: 16D90
MSC: 19L47
MSC: 22A22
MSC: 58H05
idZBL: Zbl 1249.22003
idMR: MR2853081
DOI: 10.1007/s10587-011-0037-7
.
Date available: 2011-09-22T14:34:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141628
.
Reference: [1] Adem, A., Leida, J., Ruan, Y.: Orbifolds and Stringy Topology.Cambridge Tracts in Mathematics 171, Cambridge University Press, Cambridge (2007). Zbl 1157.57001, MR 2359514
Reference: [2] Abad, C. Arias, Crainic, M.: Representations up to homotopy and Bott's spectral sequence for Lie groupoids.Preprint arXiv: 0911.2859 (2009). MR 3107517
Reference: [3] Atiyah, M. F., Anderson, D. R.: K-Theory.With reprints of M. F. Atiyah: Power operations in K-theory. New York-Amsterdam, W. A. Benjamin (1967). Zbl 0159.53401, MR 0224083
Reference: [4] Bos, R.: Continuous representations of groupoids.Preprint arXiv: 0612639 (2006). MR 2844451
Reference: [5] Blohmann, Ch., Tang, X., Weinstein, A.: Hopfish structure and modules over irrational rotation algebras.Contemporary Mathematics 462 (2008), 23-40. Zbl 0216.33803, MR 2444366, 10.1090/conm/462/09059
Reference: [6] Connes, A.: A survey of foliations and operator algebras.Proc. Symp. Pure Math. 38 (1982), 521-628. Zbl 0531.57023, MR 0679730
Reference: [7] Connes, A.: Noncommutative Geometry.Academic Press, San Diego (1994). Zbl 0818.46076, MR 1303779
Reference: [8] Crainic, M., Moerdijk, I.: A homology theory for étale groupoids.J. Reine Angew. Math. 521 (2000), 25-46. Zbl 0954.22002, MR 1752294
Reference: [9] Crainic, M., Moerdijk, I.: Foliation groupoids and their cyclic homology.Adv. Math. 157 (2001), 177-197. Zbl 0989.22010, MR 1813430, 10.1006/aima.2000.1944
Reference: [10] Crainic, M., Moerdijk, I.: Čech-De Rham theory for leaf spaces of foliations.Math. Ann. 328 (2004), 59-85. Zbl 1043.57012, MR 2030370, 10.1007/s00208-003-0473-2
Reference: [11] Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature, and Cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles.Pure and Applied Mathematics 47, Volume 1, Academic Press, New York (1972). Zbl 0322.58001, MR 0336650
Reference: [12] Haefliger, A.: Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes.Comment. Math. Helv. 32 (1958), 248-329. Zbl 0085.17303, MR 0100269, 10.1007/BF02564582
Reference: [13] Haefliger, A.: Groupoïdes d'holonomie et classifiants.Astérisque 116 (1984), 70-97. Zbl 0562.57012, MR 0755163
Reference: [14] Hilsum, M., Skandalis, G.: Morphismes $K$-orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov.Ann. Sci. Éc. Norm. Supér. 20 (1987), 325-390. Zbl 0656.57015, MR 0925720, 10.24033/asens.1537
Reference: [15] Kališnik, J.: Representations of orbifold groupoids.Topology Appl. 155 (2008), 1175-1188. MR 2421827, 10.1016/j.topol.2008.02.004
Reference: [16] Kališnik, J., Mrčun, J.: Equivalence between the Morita categories of étale Lie groupoids and of locally grouplike Hopf algebroids.Indag. Math., New Ser. 19 (2008), 73-96. MR 2466395, 10.1016/S0019-3577(08)80016-X
Reference: [17] Kamber, F., Tondeur, P.: Foliated Bundles and Characteristic Classes.Lecture Notes in Mathematics 493, Berlin-Heidelberg-New York, Springer-Verlag (1975). Zbl 0308.57011, MR 0402773
Reference: [18] Mackenzie, K. C. H.: The General Theory of Lie Groupoids and Lie Algebroids.LMS Lecture Note Series 213, Cambridge University Press, Cambridge (2005). Zbl 1078.58011, MR 2157566
Reference: [19] Milnor, J. W., Stasheff, J. D.: Characteristic Classes.Annals of Mathematics Studies 76. Princeton, N.J. Princeton University Press and University of Tokyo Press (1974). Zbl 0298.57008, MR 0440554
Reference: [20] MacLane, S.: Categories for the Working Mathematician.4th corrected printing, Graduate Texts in Mathematics, 5. New York etc., Springer-Verlag (1988). Zbl 0705.18001, MR 1712872
Reference: [21] Moerdijk, I.: The classifying topos of a continuous groupoid I.Trans. Am. Math. Soc. 310 (1988), 629-668. Zbl 0706.18007, MR 0973173, 10.1090/S0002-9947-1988-0973173-9
Reference: [22] Moerdijk, I.: Classifying toposes and foliations.Ann. Inst. Fourier 41 (1991), 189-209. Zbl 0727.57029, MR 1112197, 10.5802/aif.1254
Reference: [23] Moerdijk, I.: Orbifolds as groupoids: an introduction.Contemp. Math. 310 (2002), 205-222. Zbl 1041.58009, MR 1950948, 10.1090/conm/310/05405
Reference: [24] Moerdijk, I., Mrčun, J.: Introduction to Foliations and Lie Groupoids.Cambridge Studies in Advanced Mathematics 91, Cambridge University Press, Cambridge (2003). MR 2012261
Reference: [25] Moerdijk, I., Mrčun, J.: Lie groupoids, sheaves and cohomology.Poisson Geometry, Deformation Quantisation and Group Representations, London Mathematical Society Lecture Note Series 323, Cambridge University Press, Cambridge (2005), 145-272. MR 2166453
Reference: [26] Mrčun, J.: Stability and invariants of Hilsum-Skandalis maps.PhD Thesis, Utrecht University (1996).
Reference: [27] Mrčun, J.: Functoriality of the bimodule associated to a Hilsum-Skandalis map.K-Theory 18 (1999), 235-253. MR 1722796, 10.1023/A:1007773511327
Reference: [28] Mrčun, J.: The Hopf algebroids of functions on étale groupoids and their principal Morita equivalence.J. Pure Appl. Algebra 160 (2001), 249-262. MR 1836002, 10.1016/S0022-4049(00)00071-2
Reference: [29] Mrčun, J.: On duality between étale groupoids and Hopf algebroids.J. Pure Appl. Algebra 210 (2007), 267-282. MR 2311185, 10.1016/j.jpaa.2006.09.006
Reference: [30] Pradines, J.: Morphisms between spaces of leaves viewed as fractions.Cah. Topologie Géom. Différ. Catég. 30 (1989), 229-246. Zbl 0686.57013, MR 1029626
Reference: [31] Pronk, D., Scull, L.: Translation groupoids and orbifold cohomology.Can. J. Math. 62 (2010), 614-645. Zbl 1197.57026, MR 2666392, 10.4153/CJM-2010-024-1
Reference: [32] Renault, J.: A Groupoid Approach to $C^{\ast}$-algebras.Lecture Notes in Mathematics 793, Berlin-Heidelberg-New York, Springer-Verlag (1980). Zbl 0433.46049, MR 0584266
Reference: [33] Rieffel, M. A.: $C*$-algebras associated with irrational rotations.Pac. J. Math. 93 (1981), 415-429. Zbl 0499.46039, MR 0623572, 10.2140/pjm.1981.93.415
Reference: [34] Satake, I.: On a generalization of the notion of manifold.Proc. Natl. Acad. Sci. USA 42 (1956), 359-363. Zbl 0074.18103, MR 0079769, 10.1073/pnas.42.6.359
Reference: [35] Segal, G.: Equivariant $K$-theory.Publ. Math., Inst. Hates Étud. Sci. 34 (1968), 129-151. Zbl 0199.26202, MR 0234452, 10.1007/BF02684593
Reference: [36] Serre, J.-P.: Faisceaux algébriques cohérents.Ann. Math. 61 (1955), 197-278. Zbl 0067.16201, MR 0068874, 10.2307/1969915
Reference: [37] Swan, R. G.: Vector bundles and projective modules.Trans. Am. Math. Soc. 105 (1962), 264-277. Zbl 0109.41601, MR 0143225, 10.1090/S0002-9947-1962-0143225-6
Reference: [38] Trentinaglia, G.: On the role of effective representations of Lie groupoids.Adv. Math. 225 (2010), 826-858. Zbl 1216.58005, MR 2671181, 10.1016/j.aim.2010.03.014
Reference: [39] Winkelnkemper, H. E.: The graph of a foliation.Ann. Global Anal. Geom. 1 (1983), 51-75. Zbl 0526.53039, MR 0739904, 10.1007/BF02329732
.

Files

Files Size Format View
CzechMathJ_61-2011-3_5.pdf 358.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo