Previous |  Up |  Next

Article

Title: On the maximal operator of Walsh-Kaczmarz-Fejér means (English)
Author: Goginava, Ushangi
Author: Nagy, Károly
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 673-686
Summary lang: English
.
Category: math
.
Summary: In this paper we prove that the maximal operator $$\tilde {\sigma }^{\kappa ,*}f:=\sup _{n\in {\mathbb P}}\frac {|{\sigma }_n^\kappa f|}{\log ^{2}(n+1)},$$ where ${\sigma }_n^\kappa f$ is the $n$-th Fejér mean of the Walsh-Kaczmarz-Fourier series, is bounded from the Hardy space $H_{1/2}( G) $ to the space $L_{1/2}( G).$ (English)
Keyword: Walsh-Kaczmarz system
Keyword: Fejér means
Keyword: maximal operator
MSC: 42B25
MSC: 42C10
idZBL: Zbl 1249.42011
idMR: MR2853082
DOI: 10.1007/s10587-011-0038-6
.
Date available: 2011-09-22T14:36:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141629
.
Reference: [1] Agaev, G. N., Vilenkin, N. Ya., Dzhafarli, G. M., Rubinshtein, A. I.: Multiplicative systems of functions and harmonic analysis on 0-dimensional groups.``ELM'' Baku 180 p (1981), Russian.
Reference: [2] Fine, J.: Cesàro summability of Walsh-Fourier series.Proc. Nat. Acad. Sci. USA 41 (1955), 558-591. Zbl 0065.05303, MR 0070757, 10.1073/pnas.41.8.588
Reference: [3] Fujii, N. J.: Cesàro summability of Walsh-Fourier series.Proc. Amer. Math. Soc. 77 (1979), 111-116.
Reference: [4] Gát, G.: On $(C,1)$ summability of integrable functions with respect to the Walsh-Kaczmarz system.Studia Math. 130 (1998), 135-148. Zbl 0905.42016, MR 1623340, 10.4064/sm-130-2-135-148
Reference: [5] Gát, G., Goginava, U., Nagy, K.: On the Marcinkiewicz-Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system.Studia Sci. Math. Hungarica 46 (2009), 399-421. MR 2657025
Reference: [6] Goginava, U.: The maximal operator of the Fejér means of the character system of the $p$-series field in the Kaczmarz rearrangement.Publ. Math. Debrecen 71 (2007), 43-55. Zbl 1136.42024, MR 2340033
Reference: [7] Goginava, U.: Maximal operators of Fejér means of double Walsh-Fourier series.Acta Math. Hungar. 115 (2007), 333-340. Zbl 1174.42336, MR 2327986, 10.1007/s10474-007-5268-6
Reference: [8] Goginava, U.: Maximal operators of Fejér-Walsh means.Acta Sci. Math. (Szeged) 74 (2008), 615-624. Zbl 1199.42127, MR 2487936
Reference: [9] Goginava, U.: The maximal operator of the Marcinkiewicz-Fejér means of the $d$-dimensional Walsh-Fourier series.East J. Approx. 12 (2006), 295-302. MR 2252557
Reference: [10] Schipp, F., Wade, W. R., Simon, P., Pál, J.: Walsh Series. An Introduction to Dyadic Harmonic Analysis.Adam Hilger, Bristol-New York (1990). MR 1117682
Reference: [11] Schipp, F.: Certain rearrengements of series in the Walsh series.Mat. Zametki 18 (1975), 193-201. MR 0390633
Reference: [12] Schipp, F.: Pointwise convergence of expansions with respect to certain product systems.Anal. Math. 2 (1976), 65-76. Zbl 0343.42009, MR 0415190, 10.1007/BF02079908
Reference: [13] Simon, P.: Cesàro summability with respect to two-parameter Walsh-system.Monatsh. Math. 131 (2000), 321-334. MR 1813992, 10.1007/s006050070004
Reference: [14] Simon, P.: On the Cesàro summability with respect to the Walsh-Kaczmarz system.J. Approx. Theory 106 (2000), 249-261. Zbl 0987.42021, MR 1788275, 10.1006/jath.2000.3488
Reference: [15] Skvortsov, V. A.: On Fourier series with respect to the Walsh-Kaczmarz system.Analysis Math. 7 (1981), 141-150. Zbl 0472.42014, MR 0633073, 10.1007/BF02350811
Reference: [16] Šneider, A. A.: On series with respect to the Walsh functions with monotone coefficients.Izv. Akad. Nauk SSSR Ser. Math. 12 (1948), 179-192. MR 0025605
Reference: [17] Yano, S. H.: On Walsh series.Tohoku Math. J. 3 (1951), 223-242. MR 0045236, 10.2748/tmj/1178245527
Reference: [18] Young, W. S.: On the a.e converence of Walsh-Kaczmarz-Fourier series.Proc. Amer. Math. Soc. 44 (1974), 353-358. MR 0350310, 10.1090/S0002-9939-1974-0350310-6
Reference: [19] Weisz, F.: Martingale Hardy spaces and their applications in Fourier analysis.Springer-Verlang, Berlin (1994). Zbl 0796.60049, MR 1320508
Reference: [20] Weisz, F.: Summability of multi-dimensional Fourier series and Hardy space.Kluwer Academic, Dordrecht (2002). MR 2009144
Reference: [21] Weisz, F.: Cesàro summability of one and two-dimensional Walsh-Fourier series.Anal. Math. 22 (1996), 229-242. Zbl 0866.42020, MR 1627638, 10.1007/BF02205221
Reference: [22] Weisz, F.: $\theta$-summability of Fourier series.Acta Math. Hungar. 103 (2004), 139-176. Zbl 1060.42021, MR 2047878, 10.1023/B:AMHU.0000028241.87331.c5
.

Files

Files Size Format View
CzechMathJ_61-2011-3_6.pdf 274.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo