Title:
|
On the maximal operator of Walsh-Kaczmarz-Fejér means (English) |
Author:
|
Goginava, Ushangi |
Author:
|
Nagy, Károly |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
3 |
Year:
|
2011 |
Pages:
|
673-686 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we prove that the maximal operator $$\tilde {\sigma }^{\kappa ,*}f:=\sup _{n\in {\mathbb P}}\frac {|{\sigma }_n^\kappa f|}{\log ^{2}(n+1)},$$ where ${\sigma }_n^\kappa f$ is the $n$-th Fejér mean of the Walsh-Kaczmarz-Fourier series, is bounded from the Hardy space $H_{1/2}( G) $ to the space $L_{1/2}( G).$ (English) |
Keyword:
|
Walsh-Kaczmarz system |
Keyword:
|
Fejér means |
Keyword:
|
maximal operator |
MSC:
|
42B25 |
MSC:
|
42C10 |
idZBL:
|
Zbl 1249.42011 |
idMR:
|
MR2853082 |
DOI:
|
10.1007/s10587-011-0038-6 |
. |
Date available:
|
2011-09-22T14:36:09Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141629 |
. |
Reference:
|
[1] Agaev, G. N., Vilenkin, N. Ya., Dzhafarli, G. M., Rubinshtein, A. I.: Multiplicative systems of functions and harmonic analysis on 0-dimensional groups.``ELM'' Baku 180 p (1981), Russian. |
Reference:
|
[2] Fine, J.: Cesàro summability of Walsh-Fourier series.Proc. Nat. Acad. Sci. USA 41 (1955), 558-591. Zbl 0065.05303, MR 0070757, 10.1073/pnas.41.8.588 |
Reference:
|
[3] Fujii, N. J.: Cesàro summability of Walsh-Fourier series.Proc. Amer. Math. Soc. 77 (1979), 111-116. |
Reference:
|
[4] Gát, G.: On $(C,1)$ summability of integrable functions with respect to the Walsh-Kaczmarz system.Studia Math. 130 (1998), 135-148. Zbl 0905.42016, MR 1623340, 10.4064/sm-130-2-135-148 |
Reference:
|
[5] Gát, G., Goginava, U., Nagy, K.: On the Marcinkiewicz-Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system.Studia Sci. Math. Hungarica 46 (2009), 399-421. MR 2657025 |
Reference:
|
[6] Goginava, U.: The maximal operator of the Fejér means of the character system of the $p$-series field in the Kaczmarz rearrangement.Publ. Math. Debrecen 71 (2007), 43-55. Zbl 1136.42024, MR 2340033 |
Reference:
|
[7] Goginava, U.: Maximal operators of Fejér means of double Walsh-Fourier series.Acta Math. Hungar. 115 (2007), 333-340. Zbl 1174.42336, MR 2327986, 10.1007/s10474-007-5268-6 |
Reference:
|
[8] Goginava, U.: Maximal operators of Fejér-Walsh means.Acta Sci. Math. (Szeged) 74 (2008), 615-624. Zbl 1199.42127, MR 2487936 |
Reference:
|
[9] Goginava, U.: The maximal operator of the Marcinkiewicz-Fejér means of the $d$-dimensional Walsh-Fourier series.East J. Approx. 12 (2006), 295-302. MR 2252557 |
Reference:
|
[10] Schipp, F., Wade, W. R., Simon, P., Pál, J.: Walsh Series. An Introduction to Dyadic Harmonic Analysis.Adam Hilger, Bristol-New York (1990). MR 1117682 |
Reference:
|
[11] Schipp, F.: Certain rearrengements of series in the Walsh series.Mat. Zametki 18 (1975), 193-201. MR 0390633 |
Reference:
|
[12] Schipp, F.: Pointwise convergence of expansions with respect to certain product systems.Anal. Math. 2 (1976), 65-76. Zbl 0343.42009, MR 0415190, 10.1007/BF02079908 |
Reference:
|
[13] Simon, P.: Cesàro summability with respect to two-parameter Walsh-system.Monatsh. Math. 131 (2000), 321-334. MR 1813992, 10.1007/s006050070004 |
Reference:
|
[14] Simon, P.: On the Cesàro summability with respect to the Walsh-Kaczmarz system.J. Approx. Theory 106 (2000), 249-261. Zbl 0987.42021, MR 1788275, 10.1006/jath.2000.3488 |
Reference:
|
[15] Skvortsov, V. A.: On Fourier series with respect to the Walsh-Kaczmarz system.Analysis Math. 7 (1981), 141-150. Zbl 0472.42014, MR 0633073, 10.1007/BF02350811 |
Reference:
|
[16] Šneider, A. A.: On series with respect to the Walsh functions with monotone coefficients.Izv. Akad. Nauk SSSR Ser. Math. 12 (1948), 179-192. MR 0025605 |
Reference:
|
[17] Yano, S. H.: On Walsh series.Tohoku Math. J. 3 (1951), 223-242. MR 0045236, 10.2748/tmj/1178245527 |
Reference:
|
[18] Young, W. S.: On the a.e converence of Walsh-Kaczmarz-Fourier series.Proc. Amer. Math. Soc. 44 (1974), 353-358. MR 0350310, 10.1090/S0002-9939-1974-0350310-6 |
Reference:
|
[19] Weisz, F.: Martingale Hardy spaces and their applications in Fourier analysis.Springer-Verlang, Berlin (1994). Zbl 0796.60049, MR 1320508 |
Reference:
|
[20] Weisz, F.: Summability of multi-dimensional Fourier series and Hardy space.Kluwer Academic, Dordrecht (2002). MR 2009144 |
Reference:
|
[21] Weisz, F.: Cesàro summability of one and two-dimensional Walsh-Fourier series.Anal. Math. 22 (1996), 229-242. Zbl 0866.42020, MR 1627638, 10.1007/BF02205221 |
Reference:
|
[22] Weisz, F.: $\theta$-summability of Fourier series.Acta Math. Hungar. 103 (2004), 139-176. Zbl 1060.42021, MR 2047878, 10.1023/B:AMHU.0000028241.87331.c5 |
. |