Previous |  Up |  Next

Article

Title: On typically real functions which are generated by a fixed typically real function (English)
Author: Sobczak-Kneć, Magdalena
Author: Trąbka-Więcław, Katarzyna
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 733-742
Summary lang: English
.
Category: math
.
Summary: Let ${\rm T}$ be the family of all typically real functions, i.e. functions that are analytic in the unit disk $\Delta :=\{ z \in \mathbb {C} \colon |z|<1 \}$, normalized by $f(0)=f'(0)-1=0$ and such that $\mathop {\rm Im} z \mathop {\rm Im} f(z) \geq 0$ for $z \in \Delta $. In this paper we discuss the class ${\rm T}_g$ defined as \[{\rm T}_g:= \{ \sqrt {f(z)g(z)} \colon f \in {\rm T} \},\quad g \in {\rm T}.\] We determine the sets $\bigcup _{g \in {\rm T}} {\rm T}_g$ and $\bigcap _{g \in {\rm T}} {\rm T}_g$. Moreover, for a fixed $g$, we determine the superdomain of local univalence of ${\rm T}_g$, the radii of local univalence, of starlikeness and of univalence of ${\rm T}_g$. (English)
Keyword: typically real functions
Keyword: superdomain of local univalence
Keyword: radius of local univalence
Keyword: radius of starlikeness
Keyword: radius of univalence
MSC: 30C45
MSC: 30C55
idZBL: Zbl 1249.30045
idMR: MR2853087
DOI: 10.1007/s10587-011-0022-1
.
Date available: 2011-09-22T14:42:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141634
.
Reference: [1] Golusin, G.: On typically real functions.Mat. Sb., Nov. Ser. 27 (1950), 201-218. MR 0039060
Reference: [2] Goodman, A. W.: Univalent Functions.Mariner Publ. Co., Tampa (1983). Zbl 1041.30501
Reference: [3] Koczan, L., Zaprawa, P.: On typically real functions with $n$-fold symmetry.Ann. Univ. Mariae Curie-Sklodowska, Sect. A, Vol. L II 2 11 (1998), 103-112. Zbl 1010.30019, MR 1728062
Reference: [4] Rogosinski, W. W.: Über positive harmonische Entwicklungen und typischreelle Potenzreihen.Math. Z. 35 (1932), 93-121. MR 1545292, 10.1007/BF01186552
Reference: [5] Todorov, P. G.: The radii of starlikeness and convexity of order alpha of typically real functions.Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 93-106. MR 0698840, 10.5186/aasfm.1983.0824
.

Files

Files Size Format View
CzechMathJ_61-2011-3_11.pdf 261.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo