Previous |  Up |  Next

Article

Title: Factorization theorem for $1$-summing operators (English)
Author: Ferrando, Irene
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 785-793
Summary lang: English
.
Category: math
.
Summary: We study some classes of summing operators between spaces of integrable functions with respect to a vector measure in order to prove a factorization theorem for $1$-summing operators between Banach spaces. (English)
Keyword: vector measures
Keyword: integrable functions
Keyword: sequences on Banach spaces
Keyword: summing operators
MSC: 46E30
MSC: 46G10
MSC: 47A68
MSC: 47B10
MSC: 47B47
idZBL: Zbl 1249.47007
idMR: MR2853092
DOI: 10.1007/s10587-011-0027-9
.
Date available: 2011-09-22T14:47:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141639
.
Reference: [1] Bartle, R. G., Dunford, N., Schwartz, J.: Weak Compactness and Vector Measures.Canad. J. Math. 7 (1955), 289-305. Zbl 0068.09301, MR 0070050, 10.4153/CJM-1955-032-1
Reference: [2] Blasco, O., Calabuig, J. M., Signes, T.: A bilinear version of Orlicz-Pettis Theorem.J. Math. Anal. Appl. 348 (2008), 150-164. Zbl 1161.46005, MR 2449334, 10.1016/j.jmaa.2008.07.013
Reference: [3] Calabuig, J. M.: Integración bilineal.Tesis doctoral (2004).
Reference: [4] Curbera, G. P.: Operators into $L^1$ of a vector measure and applications to Banach lattices.Math. Ann. 293 (1992), 317-330. MR 1166123, 10.1007/BF01444717
Reference: [5] Diestel, J., Jr., J. J. Uhl: Vector Measures.Amer. Math. Soc. Surveys 15, Providence, R.I. (1977). Zbl 0369.46039, MR 0453964
Reference: [6] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics, Cambridge (1995). Zbl 0855.47016, MR 1342297
Reference: [7] Ferrando, I., Rodríguez, J.: The weak topology on $L^{p}$ of a vector measure.Topology and its Applications 55 (2008), 1439-1444. MR 2427417
Reference: [8] Lewis, D. R.: Integration with respect to vector measures.Pacific J. Math. 33 (1970), 157-165. Zbl 0195.14303, MR 0259064, 10.2140/pjm.1970.33.157
Reference: [9] Okada, S., Ricker, W., Sánchez-Pérez, E. A.: Optimal Domain and Integral Extension of Operators Acting in Function Spaces.Operator Theory: Advances and Applications, Vol. 180, Birkhäuser (2008). MR 2418751
.

Files

Files Size Format View
CzechMathJ_61-2011-3_16.pdf 258.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo