Previous |  Up |  Next

Article

Title: The fractional dimensional theory in Lüroth expansion (English)
Author: Shen, Luming
Author: Fang, Kui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 795-807
Summary lang: English
.
Category: math
.
Summary: It is well known that every $x\in (0,1]$ can be expanded to an infinite Lüroth series in the form of $$x=\frac {1}{d_1(x)}+\cdots +\frac {1}{d_1(x)(d_1(x)-1)\cdots d_{n-1}(x)(d_{n-1}(x)-1)d_n(x)}+\cdots , $$ where $d_n(x)\geq 2$ for all $n\geq 1$. In this paper, sets of points with some restrictions on the digits in Lüroth series expansions are considered. Mainly, the Hausdorff dimensions of the Cantor sets $$ F_{\phi }=\{x\in (0,1]\colon d_n(x)\geq \phi (n), \ \forall n\geq 1\} $$are completely determined, where $\phi $ is an integer-valued function defined on $\mathbb N$, and $\phi (n)\to \infty $ as $n\to \infty $. (English)
Keyword: Lüroth series
Keyword: Cantor set
Keyword: Hausdorff dimension
MSC: 11K55
MSC: 28A78
MSC: 28A80
idZBL: Zbl 1249.11084
idMR: MR2853093
DOI: 10.1007/s10587-011-0028-8
.
Date available: 2011-09-22T14:48:05Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141640
.
Reference: [1] Barreiraa, L., Iommi, G.: Frequency of digits in the Lüroth expansion.J. Number Theory. 129 (2009), 1479-1490. MR 2521488, 10.1016/j.jnt.2008.06.002
Reference: [2] Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers.The Carus Mathematical Monographs, 29. Washington DC, Mathematical Association of America (2002). Zbl 1033.11040, MR 1917322
Reference: [3] Dajani, K., Kraaikamp, C.: On approximation by Lüroth series.J. Théor. Nombres Bordx. 8 (1996), 331-346. Zbl 0870.11039, MR 1438473, 10.5802/jtnb.172
Reference: [4] Falconer, K. J.: Fractal Geometry: Mathematical Foundations and Application.John Wiley & Sons (1990). MR 1102677
Reference: [5] Falconer, K. J.: Techniques in Fractal Geometry.John Wiley & Sons (1997). Zbl 0869.28003, MR 1449135
Reference: [6] Fan, A. H., Liao, L. M., Ma, J. H., Wang, B. W.: Dimension of Besicovitch-Eggleston sets in countable symbolic space.Nonlinearity. 23 (2010), 1185-1197. MR 2630097, 10.1088/0951-7715/23/5/009
Reference: [7] Galambos, J.: Reprentations of Real Numbers by Infinite Series.Lecture Notes in Mathematics 502, Berlin-Heidelberg-New York, Springer-Verlag (1976). MR 0568141
Reference: [8] Good, I. J.: The fractional dimensional theory of continued fractions.Proc. Camb. Philos. Soc. 37 (1941), 199-228. Zbl 0061.09408, MR 0004878, 10.1017/S030500410002171X
Reference: [9] Jager, H., Vroedt, C. De: Lüroth series and their ergodic properties.Nederl. Akad. Wet., Proc. Ser. A72 (1969), 31-42. Zbl 0167.32201, MR 0238793
Reference: [10] L'uczak, T.: On the fractional dimension of sets of continued fractions.Mathematika 44 (1997), 50-53. MR 1464375, 10.1112/S0025579300011955
Reference: [11] Lüroth, J.: Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe.Math. Annalen. 21 (1883), 411-423. MR 1510205, 10.1007/BF01443883
Reference: [12] Šalát, T.: Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen.Czech. Math. J. 18 (1968), 489-522. MR 0229605
Reference: [13] Schweiger, F.: Ergodic Theory of Fibred Systems and Metric Number Theory.Oxford, Clarendon Press (1995). Zbl 0819.11027, MR 1419320
Reference: [14] Shen, L. M., Wu, J.: On the error-sum function of Lüroth series.J. Math. Anal. Appl. 329 (2007), 1440-1445. Zbl 1154.11331, MR 2296934, 10.1016/j.jmaa.2006.07.049
Reference: [15] Wang, B. W., Wu, J.: Hausdorff dimension of certain sets arising in continued fraction expansions.Adv. Math. 218 (2008), 1319-1339. MR 2419924, 10.1016/j.aim.2008.03.006
.

Files

Files Size Format View
CzechMathJ_61-2011-3_17.pdf 277.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo