Title:
|
The fractional dimensional theory in Lüroth expansion (English) |
Author:
|
Shen, Luming |
Author:
|
Fang, Kui |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
3 |
Year:
|
2011 |
Pages:
|
795-807 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is well known that every $x\in (0,1]$ can be expanded to an infinite Lüroth series in the form of $$x=\frac {1}{d_1(x)}+\cdots +\frac {1}{d_1(x)(d_1(x)-1)\cdots d_{n-1}(x)(d_{n-1}(x)-1)d_n(x)}+\cdots , $$ where $d_n(x)\geq 2$ for all $n\geq 1$. In this paper, sets of points with some restrictions on the digits in Lüroth series expansions are considered. Mainly, the Hausdorff dimensions of the Cantor sets $$ F_{\phi }=\{x\in (0,1]\colon d_n(x)\geq \phi (n), \ \forall n\geq 1\} $$are completely determined, where $\phi $ is an integer-valued function defined on $\mathbb N$, and $\phi (n)\to \infty $ as $n\to \infty $. (English) |
Keyword:
|
Lüroth series |
Keyword:
|
Cantor set |
Keyword:
|
Hausdorff dimension |
MSC:
|
11K55 |
MSC:
|
28A78 |
MSC:
|
28A80 |
idZBL:
|
Zbl 1249.11084 |
idMR:
|
MR2853093 |
DOI:
|
10.1007/s10587-011-0028-8 |
. |
Date available:
|
2011-09-22T14:48:05Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141640 |
. |
Reference:
|
[1] Barreiraa, L., Iommi, G.: Frequency of digits in the Lüroth expansion.J. Number Theory. 129 (2009), 1479-1490. MR 2521488, 10.1016/j.jnt.2008.06.002 |
Reference:
|
[2] Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers.The Carus Mathematical Monographs, 29. Washington DC, Mathematical Association of America (2002). Zbl 1033.11040, MR 1917322 |
Reference:
|
[3] Dajani, K., Kraaikamp, C.: On approximation by Lüroth series.J. Théor. Nombres Bordx. 8 (1996), 331-346. Zbl 0870.11039, MR 1438473, 10.5802/jtnb.172 |
Reference:
|
[4] Falconer, K. J.: Fractal Geometry: Mathematical Foundations and Application.John Wiley & Sons (1990). MR 1102677 |
Reference:
|
[5] Falconer, K. J.: Techniques in Fractal Geometry.John Wiley & Sons (1997). Zbl 0869.28003, MR 1449135 |
Reference:
|
[6] Fan, A. H., Liao, L. M., Ma, J. H., Wang, B. W.: Dimension of Besicovitch-Eggleston sets in countable symbolic space.Nonlinearity. 23 (2010), 1185-1197. MR 2630097, 10.1088/0951-7715/23/5/009 |
Reference:
|
[7] Galambos, J.: Reprentations of Real Numbers by Infinite Series.Lecture Notes in Mathematics 502, Berlin-Heidelberg-New York, Springer-Verlag (1976). MR 0568141 |
Reference:
|
[8] Good, I. J.: The fractional dimensional theory of continued fractions.Proc. Camb. Philos. Soc. 37 (1941), 199-228. Zbl 0061.09408, MR 0004878, 10.1017/S030500410002171X |
Reference:
|
[9] Jager, H., Vroedt, C. De: Lüroth series and their ergodic properties.Nederl. Akad. Wet., Proc. Ser. A72 (1969), 31-42. Zbl 0167.32201, MR 0238793 |
Reference:
|
[10] L'uczak, T.: On the fractional dimension of sets of continued fractions.Mathematika 44 (1997), 50-53. MR 1464375, 10.1112/S0025579300011955 |
Reference:
|
[11] Lüroth, J.: Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe.Math. Annalen. 21 (1883), 411-423. MR 1510205, 10.1007/BF01443883 |
Reference:
|
[12] Šalát, T.: Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen.Czech. Math. J. 18 (1968), 489-522. MR 0229605 |
Reference:
|
[13] Schweiger, F.: Ergodic Theory of Fibred Systems and Metric Number Theory.Oxford, Clarendon Press (1995). Zbl 0819.11027, MR 1419320 |
Reference:
|
[14] Shen, L. M., Wu, J.: On the error-sum function of Lüroth series.J. Math. Anal. Appl. 329 (2007), 1440-1445. Zbl 1154.11331, MR 2296934, 10.1016/j.jmaa.2006.07.049 |
Reference:
|
[15] Wang, B. W., Wu, J.: Hausdorff dimension of certain sets arising in continued fraction expansions.Adv. Math. 218 (2008), 1319-1339. MR 2419924, 10.1016/j.aim.2008.03.006 |
. |