Previous |  Up |  Next

Article

Title: Statistical causality and adapted distribution (English)
Author: Petrović, Ljiljana
Author: Dimitrijević, Sladjana
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 827-843
Summary lang: English
.
Category: math
.
Summary: In the paper D. Hoover, J. Keisler: Adapted probability distributions, Trans. Amer. Math. Soc. 286 (1984), 159–201 the notion of adapted distribution of two stochastic processes was introduced, which in a way represents the notion of equivalence of those processes. This very important property is hard to prove directly, so we continue the work of Keisler and Hoover in finding sufficient conditions for two stochastic processes to have the same adapted distribution. For this purpose we use the concept of causality between stochastic processes, which is based on Granger's definition of causality. Also, we provide applications of our results to solutions of some stochastic differential equations. (English)
Keyword: filtration
Keyword: causality
Keyword: adapted distribution
Keyword: weak solution of stochastic differential equation
MSC: 03C98
MSC: 60G07
MSC: 60H10
idZBL: Zbl 1249.60063
idMR: MR2853095
DOI: 10.1007/s10587-011-0030-1
.
Date available: 2011-09-22T14:51:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141642
.
Reference: [1] Aldous, D.: Weak convergence and the general theory of proccesses, preprint (1981)..
Reference: [2] Bremaud, P., Yor, M.: Changes of filtrations and of probability measures.Z. Wahrscheinlichkeitstheor. Verw. Geb. (1978), 45 269-295. Zbl 0415.60048, MR 0511775, 10.1007/BF00537538
Reference: [3] Fajardo, S., Keisler, H. J.: Model Theory of Stochastic Processes, Lecture Notes in Logic vol. 14, Urbana, 2002, Association for Symbolic Logic.. MR 1939107
Reference: [4] Florens, J. P., Fougères, D.: Noncausality in continuous time.Econometrica 64 (1996), 1195-1212. MR 1403234, 10.2307/2171962
Reference: [5] Gill, J. B., Petrović, L.: Causality and stochastic dynamic systems.SIAM J. Appl. Math. 47 (1987), 1361-1366. MR 0916245, 10.1137/0147089
Reference: [6] Granger, C. W. J.: Investigating causal relations by econometric models and cross spectral methods.Econometrica 37 (1969), 424-438. 10.2307/1912791
Reference: [7] Hoover, D. N.: Adapted distribution, Probability theory and applications.Proc. World Congr. Bernoulli Soc., Tashkent/USSR 1986 1 201-204 (1987). MR 1092353
Reference: [8] Hoover, D. N.: Synonymity, generalized martingales, and subfiltrations.Ann. Probab. 12 (1984), 703-713. Zbl 0545.60040, MR 0744227, 10.1214/aop/1176993221
Reference: [9] Hoover, D. N.: A characterization of adapted distribution.Ann. Probab. 15 (1987), 1600-1611. Zbl 0634.60033, MR 0905352, 10.1214/aop/1176991997
Reference: [10] Hoover, D. N.: Extending probability spaces and adapted distribution, Séminare de probabilitités XXVI.Lect. Notes Math. 1526 (1992), 560-574. MR 1232018, 10.1007/BFb0084345
Reference: [11] Hoover, D. N., Keisler, H. J.: Adapted probability distributions.Trans. Am. Math. Soc. 286 (1984), 159-201. Zbl 0548.60019, MR 0756035, 10.1090/S0002-9947-1984-0756035-8
Reference: [12] Lipster, R. S., Shiryaev, A. N.: Statistics of Random Processes I, General theory.Applications of Mathematics vol. 5, Springer-Verlag, New York-Heidelberg-Berlin (1977). MR 0474486
Reference: [13] Mykland, P. A.: Statistical causality.Statistical Report no. 14, Dept. of Mathematics, University of Bergen (1986).
Reference: [14] Nualart, D., Ouknine, Y.: Regularization of differential equations by fractional noise.Stochastic Processes. Appl. 102 (2002), 103-116. Zbl 1075.60536, MR 1934157
Reference: [15] Petrović, L.: Causality and Markovian representations.Stat. Probab. Lett. 29 (1996), 221-227. MR 1411421, 10.1016/0167-7152(95)00176-X
Reference: [16] Petrović, L.: Causality and stochastic realization.Int. J. Math. Math. Sci. (2005), 349-356. MR 2148248, 10.1155/IJMMS.2005.349
Reference: [17] Petrović, L., Stanojević, D.: Statistical Causality, Extremal Measures and Weak Solutions of Stochastic Differential Equations with Driving Semimartingales, vol. 9.JMMA (2010), 113-128. MR 2596243
Reference: [18] Petrović, L., Dimitrijević, S.: Some models of causality and stochastic differential equations driven by fractional Brownian motion.Facta Univ., Ser. Math. Inf. 20 (2005), 113-122. MR 2185971
Reference: [19] Rozanov, Y. A.: Innovation Processes, Scripta Series in Mathematics.Washington, V. H. Winston and Sons, New York (1977). MR 0445595
Reference: [20] Rozanov, Y. A.: Markov Random Fields.Springer-Verlag, Berlin-New York-Heidelberg (1982). Zbl 0498.60057, MR 0676644
Reference: [21] Strook, D. W., Yor, M.: On extremal solutions of martingale problems.Ann. Sci. Éc. Norm. Supér. (4) 13 (1980), 95-164. MR 0584083, 10.24033/asens.1378
Reference: [22] Yor, M.: Sur L'Étude des Martingales Continues Extremales.Stochastics 2 (1979), 191-196. Zbl 0409.60043, MR 0528910, 10.1080/17442507908833125
.

Files

Files Size Format View
CzechMathJ_61-2011-3_19.pdf 301.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo