Title:
|
Two valued measure and some new double sequence spaces in $2$-normed spaces (English) |
Author:
|
Das, Pratulananda |
Author:
|
Savas, Ekrem |
Author:
|
Bhunia, Santanu |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
3 |
Year:
|
2011 |
Pages:
|
809-825 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The purpose of this paper is to introduce some new generalized double difference sequence spaces using summability with respect to a two valued measure and an Orlicz function in $2$-normed spaces which have unique non-linear structure and to examine some of their properties. This approach has not been used in any context before. (English) |
Keyword:
|
convergence |
Keyword:
|
$\mu $-statistical convergence |
Keyword:
|
convergence in $\mu $-density |
Keyword:
|
condition (APO$_{2}$) |
Keyword:
|
2-norm |
Keyword:
|
2-normed space |
Keyword:
|
paranorm |
Keyword:
|
paranormed space |
Keyword:
|
Orlicz function |
Keyword:
|
sequence space |
MSC:
|
40A99 |
MSC:
|
40C05 |
MSC:
|
40H05 |
MSC:
|
46A45 |
MSC:
|
46A70 |
idZBL:
|
Zbl 1249.46003 |
idMR:
|
MR2853094 |
DOI:
|
10.1007/s10587-011-0029-7 |
. |
Date available:
|
2011-09-22T14:49:45Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141641 |
. |
Reference:
|
[1] Bhunia, S., Das, P.: Two valued measure and summability of double sequences in asymmetric context.Acta Math. Hung. 130 (2011), 167-187. MR 2754393, 10.1007/s10474-010-0005-y |
Reference:
|
[2] Colak, R., Et, M., Malkowsky, E.: Strongly almost $(w,\lambda)$-summable sequences defined by Orlicz functions.Hokkaido Math. J. 34 (2005), 265-276. Zbl 1099.46004, MR 2158997, 10.14492/hokmj/1285766222 |
Reference:
|
[3] Connor, J.: Two valued measures and summability.Analysis 10 (1990), 373-385. Zbl 0726.40009, MR 1085803, 10.1524/anly.1990.10.4.373 |
Reference:
|
[4] Connor, J.: $R$-type summability methods, Cauchy criteria, $P$-sets and statistical convergence.Proc. Am. Math. Soc. 115 (1992), 319-327. Zbl 0765.40002, MR 1095221 |
Reference:
|
[5] Das, P., Malik, P.: On the statistical and $I$ variation of double sequences.Real Anal. Exch. 33 (2008), 351-363. MR 2458252, 10.14321/realanalexch.33.2.0351 |
Reference:
|
[6] Das, P., Kostyrko, P., Wilczyński, W., Malik, P.: $I$ and $I^{*}$-convergence of double sequences.Math. Slovaca 58 (2008), 605-620. Zbl 1199.40026, MR 2434680, 10.2478/s12175-008-0096-x |
Reference:
|
[7] Das, P., Bhunia, S.: Two valued measure and summability of double sequences.Czechoslovak Math. J. 59(134) (2009), 1141-1155. MR 2563584, 10.1007/s10587-009-0081-8 |
Reference:
|
[8] Das, P., Malik, P., Savaş, E.: On statistical limit points of double sequences.Appl. Math. Comput. 215 (2009), 1030-1034. MR 2568958, 10.1016/j.amc.2009.06.036 |
Reference:
|
[9] Fast, H.: Sur la convergence statistique.Colloq. Math. 2 (1951), 241-244. Zbl 0044.33605, MR 0048548, 10.4064/cm-2-3-4-241-244 |
Reference:
|
[10] Fridy, J. A.: On statistical convergence.Analysis 5 (1985), 301-313. Zbl 0588.40001, MR 0816582, 10.1524/anly.1985.5.4.301 |
Reference:
|
[11] Gähler, S.: 2-metrische Räume und ihre topologische Struktur.Math. Nachr. 26 (1963), 115-148 German. MR 0162224, 10.1002/mana.19630260109 |
Reference:
|
[12] Gähler, S.: 2-normed spaces.Math. Nachr. 28 (1964), 1-43. |
Reference:
|
[13] Gähler, S., Siddiqi, A. H., Gupta, S. C.: Contributions to non-Archimedean functional analysis.Math. Nachr. 69 (1975), 162-171. MR 0390798 |
Reference:
|
[14] Gürdal, M., Pehlivan, S.: Statistical convergence in $2$-normed spaces.Southeast Asian Bull. Math. 33 (2009), 257-264. MR 2521861 |
Reference:
|
[15] Gürdal, M., Sahiner, A., Açik, I.: Approximation theory in 2-Banach spaces.Nolinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 1654-1661. MR 2524378, 10.1016/j.na.2009.01.030 |
Reference:
|
[16] Krasnosel'skij, M. A., Rutiskij, Y. B.: Convex Functions and Orlicz Spaces.P. Noordhoff Ltd. Groningen (1961). MR 0126722 |
Reference:
|
[17] Maddox, I. J.: Sequence spaces defined by a modulus.Math. Proc. Camb. Philos. Soc. 100 (1986), 161-166. Zbl 0631.46010, MR 0838663, 10.1017/S0305004100065968 |
Reference:
|
[18] Maddox, I. J.: Elements of Functional Analysis.Cambridge University Press Cambridge (1970). Zbl 0193.08601, MR 0390692 |
Reference:
|
[19] Móricz, F.: Statistical convergence of multiple sequences.Arch. Math. 81 (2003), 82-89. MR 2002719, 10.1007/s00013-003-0506-9 |
Reference:
|
[20] Mursaleen, Edely, O. H. H.: Statistical convergence of double sequences.J. Math. Anal. Appl. 288 (2003), 223-231. Zbl 1032.40001, MR 2019757, 10.1016/j.jmaa.2003.08.004 |
Reference:
|
[21] Nuray, F., Ruckle, W. H.: Generalized statistical convergence and convergence free spaces.J. Math. Anal. Appl. 245 (2000), 513-527. Zbl 0955.40001, MR 1758553, 10.1006/jmaa.2000.6778 |
Reference:
|
[22] Parashar, S. D., Choudhary, B.: Sequence spaces defined by Orlicz functions.Indian J. Pure Appl. Math. 25 (1994), 419-428. Zbl 0802.46020, MR 1272814 |
Reference:
|
[23] Pringsheim, A.: Zur Theorie der zweifach unendlichen Zahlenfolgen.Math. Ann. 53 (1900), 289-321 German. MR 1511092, 10.1007/BF01448977 |
Reference:
|
[24] Ruckle, W. H.: $FK$ spaces in which the sequence of coordinate vectors is bounded.Canad. J. Math. 25 (1973), 973-978. Zbl 0267.46008, MR 0338731, 10.4153/CJM-1973-102-9 |
Reference:
|
[25] Sahiner, A., Gürdal, M., Saltan, S., Gunawan, H.: Ideal convergence in 2-normed spaces.Taiwanese J. Math. 11 (2007), 1477-1484. MR 2368664, 10.11650/twjm/1500404879 |
Reference:
|
[26] Šalát, T.: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139-150. MR 0587239 |
Reference:
|
[27] Savaş, E., Mursaleen: On statistically convergent double sequences of fuzzy numbers.Inf. Sci. 162 (2004), 183-192. MR 2076238, 10.1016/j.ins.2003.09.005 |
Reference:
|
[28] Savaş, E., Patterson, R. F.: An Orlicz extension of some new sequences spaces.Rend. Ist. Mat. Univ. Trieste 37 (2005), 145-154. MR 2227053 |
Reference:
|
[29] Savaş, E., Rhoades, B. E.: Double absolute summability factor theorems and applications.Nonlinear Anal., Theory Methods Appl. 69 (2008), 189-200. MR 2417863 |
Reference:
|
[30] Schoenberg, I. J.: The integrability of certain functions and related summability methods.Am. Math. Mon. 66 (1959), 361-375, 562-563. Zbl 0089.04002, MR 0104946, 10.2307/2308747 |
. |