Previous |  Up |  Next

Article

Title: Two valued measure and some new double sequence spaces in $2$-normed spaces (English)
Author: Das, Pratulananda
Author: Savas, Ekrem
Author: Bhunia, Santanu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 809-825
Summary lang: English
.
Category: math
.
Summary: The purpose of this paper is to introduce some new generalized double difference sequence spaces using summability with respect to a two valued measure and an Orlicz function in $2$-normed spaces which have unique non-linear structure and to examine some of their properties. This approach has not been used in any context before. (English)
Keyword: convergence
Keyword: $\mu $-statistical convergence
Keyword: convergence in $\mu $-density
Keyword: condition (APO$_{2}$)
Keyword: 2-norm
Keyword: 2-normed space
Keyword: paranorm
Keyword: paranormed space
Keyword: Orlicz function
Keyword: sequence space
MSC: 40A99
MSC: 40C05
MSC: 40H05
MSC: 46A45
MSC: 46A70
idZBL: Zbl 1249.46003
idMR: MR2853094
DOI: 10.1007/s10587-011-0029-7
.
Date available: 2011-09-22T14:49:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141641
.
Reference: [1] Bhunia, S., Das, P.: Two valued measure and summability of double sequences in asymmetric context.Acta Math. Hung. 130 (2011), 167-187. MR 2754393, 10.1007/s10474-010-0005-y
Reference: [2] Colak, R., Et, M., Malkowsky, E.: Strongly almost $(w,\lambda)$-summable sequences defined by Orlicz functions.Hokkaido Math. J. 34 (2005), 265-276. Zbl 1099.46004, MR 2158997, 10.14492/hokmj/1285766222
Reference: [3] Connor, J.: Two valued measures and summability.Analysis 10 (1990), 373-385. Zbl 0726.40009, MR 1085803, 10.1524/anly.1990.10.4.373
Reference: [4] Connor, J.: $R$-type summability methods, Cauchy criteria, $P$-sets and statistical convergence.Proc. Am. Math. Soc. 115 (1992), 319-327. Zbl 0765.40002, MR 1095221
Reference: [5] Das, P., Malik, P.: On the statistical and $I$ variation of double sequences.Real Anal. Exch. 33 (2008), 351-363. MR 2458252, 10.14321/realanalexch.33.2.0351
Reference: [6] Das, P., Kostyrko, P., Wilczyński, W., Malik, P.: $I$ and $I^{*}$-convergence of double sequences.Math. Slovaca 58 (2008), 605-620. Zbl 1199.40026, MR 2434680, 10.2478/s12175-008-0096-x
Reference: [7] Das, P., Bhunia, S.: Two valued measure and summability of double sequences.Czechoslovak Math. J. 59(134) (2009), 1141-1155. MR 2563584, 10.1007/s10587-009-0081-8
Reference: [8] Das, P., Malik, P., Savaş, E.: On statistical limit points of double sequences.Appl. Math. Comput. 215 (2009), 1030-1034. MR 2568958, 10.1016/j.amc.2009.06.036
Reference: [9] Fast, H.: Sur la convergence statistique.Colloq. Math. 2 (1951), 241-244. Zbl 0044.33605, MR 0048548, 10.4064/cm-2-3-4-241-244
Reference: [10] Fridy, J. A.: On statistical convergence.Analysis 5 (1985), 301-313. Zbl 0588.40001, MR 0816582, 10.1524/anly.1985.5.4.301
Reference: [11] Gähler, S.: 2-metrische Räume und ihre topologische Struktur.Math. Nachr. 26 (1963), 115-148 German. MR 0162224, 10.1002/mana.19630260109
Reference: [12] Gähler, S.: 2-normed spaces.Math. Nachr. 28 (1964), 1-43.
Reference: [13] Gähler, S., Siddiqi, A. H., Gupta, S. C.: Contributions to non-Archimedean functional analysis.Math. Nachr. 69 (1975), 162-171. MR 0390798
Reference: [14] Gürdal, M., Pehlivan, S.: Statistical convergence in $2$-normed spaces.Southeast Asian Bull. Math. 33 (2009), 257-264. MR 2521861
Reference: [15] Gürdal, M., Sahiner, A., Açik, I.: Approximation theory in 2-Banach spaces.Nolinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 1654-1661. MR 2524378, 10.1016/j.na.2009.01.030
Reference: [16] Krasnosel'skij, M. A., Rutiskij, Y. B.: Convex Functions and Orlicz Spaces.P. Noordhoff Ltd. Groningen (1961). MR 0126722
Reference: [17] Maddox, I. J.: Sequence spaces defined by a modulus.Math. Proc. Camb. Philos. Soc. 100 (1986), 161-166. Zbl 0631.46010, MR 0838663, 10.1017/S0305004100065968
Reference: [18] Maddox, I. J.: Elements of Functional Analysis.Cambridge University Press Cambridge (1970). Zbl 0193.08601, MR 0390692
Reference: [19] Móricz, F.: Statistical convergence of multiple sequences.Arch. Math. 81 (2003), 82-89. MR 2002719, 10.1007/s00013-003-0506-9
Reference: [20] Mursaleen, Edely, O. H. H.: Statistical convergence of double sequences.J. Math. Anal. Appl. 288 (2003), 223-231. Zbl 1032.40001, MR 2019757, 10.1016/j.jmaa.2003.08.004
Reference: [21] Nuray, F., Ruckle, W. H.: Generalized statistical convergence and convergence free spaces.J. Math. Anal. Appl. 245 (2000), 513-527. Zbl 0955.40001, MR 1758553, 10.1006/jmaa.2000.6778
Reference: [22] Parashar, S. D., Choudhary, B.: Sequence spaces defined by Orlicz functions.Indian J. Pure Appl. Math. 25 (1994), 419-428. Zbl 0802.46020, MR 1272814
Reference: [23] Pringsheim, A.: Zur Theorie der zweifach unendlichen Zahlenfolgen.Math. Ann. 53 (1900), 289-321 German. MR 1511092, 10.1007/BF01448977
Reference: [24] Ruckle, W. H.: $FK$ spaces in which the sequence of coordinate vectors is bounded.Canad. J. Math. 25 (1973), 973-978. Zbl 0267.46008, MR 0338731, 10.4153/CJM-1973-102-9
Reference: [25] Sahiner, A., Gürdal, M., Saltan, S., Gunawan, H.: Ideal convergence in 2-normed spaces.Taiwanese J. Math. 11 (2007), 1477-1484. MR 2368664, 10.11650/twjm/1500404879
Reference: [26] Šalát, T.: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139-150. MR 0587239
Reference: [27] Savaş, E., Mursaleen: On statistically convergent double sequences of fuzzy numbers.Inf. Sci. 162 (2004), 183-192. MR 2076238, 10.1016/j.ins.2003.09.005
Reference: [28] Savaş, E., Patterson, R. F.: An Orlicz extension of some new sequences spaces.Rend. Ist. Mat. Univ. Trieste 37 (2005), 145-154. MR 2227053
Reference: [29] Savaş, E., Rhoades, B. E.: Double absolute summability factor theorems and applications.Nonlinear Anal., Theory Methods Appl. 69 (2008), 189-200. MR 2417863
Reference: [30] Schoenberg, I. J.: The integrability of certain functions and related summability methods.Am. Math. Mon. 66 (1959), 361-375, 562-563. Zbl 0089.04002, MR 0104946, 10.2307/2308747
.

Files

Files Size Format View
CzechMathJ_61-2011-3_18.pdf 291.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo