Previous |  Up |  Next

Article

Title: Affine connections on almost para-cosymplectic manifolds (English)
Author: Blaga, Adara M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 863-871
Summary lang: English
.
Category: math
.
Summary: Identities for the curvature tensor of the Levi-Cività connection on an almost para-cosymplectic manifold are proved. Elements of harmonic theory for almost product structures are given and a Bochner-type formula for the leaves of the canonical foliation is established. (English)
Keyword: para-cosymplectic manifold
Keyword: harmonic product structure
MSC: 53C05
MSC: 53C15
MSC: 58A10
MSC: 70G45
idZBL: Zbl 1249.53038
idMR: MR2853097
DOI: 10.1007/s10587-011-0033-y
.
Date available: 2011-09-22T14:52:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141644
.
Reference: [1] Bejan, C. L., Ferrara, M.: Para-Kähler manifolds of quasi-constant $P$-sectional curvature.Proceedings of the Conference Contemporary Geometry and Related Topics, Belgrade, Serbia and Montenegro, June 26--July 2, 2005 N. Bokan Cigoja Publishing Company (2006), 29-36. Zbl 1143.53327, MR 2963620
Reference: [2] Dacko, P., Olszak, Z.: On weakly para-cosymplectic manifolds of dimension $3$.J. Geom. Phys. 57 (2007), 561-570. Zbl 1123.53015, MR 2271205, 10.1016/j.geomphys.2006.05.001
Reference: [3] Erdem, S.: On almost (para)contact (hyperbolic) metric manifolds and harmonicity of $(\varphi,\varphi')$-holomorphic maps between them.Houston J. Math. 28 (2002), 21-45. MR 1876938
Reference: [4] Funabashi, S., Kim, H. S., Kim, Y.-M., Pak, J. S.: Traceless component of the conformal curvature tensor in Kähler manifold.Czech. Math. J. 56 (2006), 857-874. Zbl 1164.53382, MR 2261658, 10.1007/s10587-006-0061-1
Reference: [5] Jianming, W.: Harmonic complex structures.Chin. Ann. Math., Ser. A 30 (2009), 761-764; arXiv: 1007.4392v1/math.DG (2010). MR 2650148
Reference: [6] Olszak, Z.: On almost cosymplectic manifolds.Kodai Math. J. 4 (1981), 239-250. Zbl 0451.53035, MR 0630244, 10.2996/kmj/1138036371
Reference: [7] Prvanović, M.: Holomorphically projective transformations in a locally product space.Math. Balk. 1 (1971), 195-213. MR 0288710
Reference: [8] Schäfer, L.: $tt^*$-bundles in para-complex geometry, special para-Kähler manifolds and para-pluriharmonic maps.Differ. Geom. Appl. 24 (2006), 60-89. Zbl 1093.53046, MR 2193748, 10.1016/j.difgeo.2005.07.001
Reference: [9] Xin, Y. L.: Geometry of Harmonic Maps. Progress in Nonlinear Differential Equations and Their Applications 23.Birkhäuser Boston (1996). MR 1391729
.

Files

Files Size Format View
CzechMathJ_61-2011-3_21.pdf 241.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo