Previous |  Up |  Next

Article

Title: Multiobjective De Novo Linear Programming (English)
Author: Fiala, Petr
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 50
Issue: 2
Year: 2011
Pages: 29-36
Summary lang: English
.
Category: math
.
Summary: Mathematical programming under multiple objectives has emerged as a powerful tool to assist in the process of searching for decisions which best satisfy a multitude of conflicting objectives. In multiobjective linear programming problems it is usually impossible to optimize all objectives in a given system. Trade-offs are properties of inadequately designed system a thus can be eliminated through designing better one. Multiobjective De Novo linear programming is problem for designing optimal system by reshaping the feasible set. The paper presents approaches for solving the MODNLP problem, extensions of the problem, examples, and applications. (English)
Keyword: De Novo programming
Keyword: multiple objectives
Keyword: linear programming
Keyword: trade-offs
MSC: 90C29
idZBL: Zbl 1244.90207
idMR: MR2920706
.
Date available: 2011-12-16T14:44:48Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141751
.
Reference: [1] Babic, Z., Pavic, I.: Multicriterial production planning by De Novo programming approach. International Journal of Production Economics 43 (1996), 59–66. 10.1016/0925-5273(95)00177-8
Reference: [2] Fiala, P.: Modely a metody rozhodování. Economia, Praha, 2008.
Reference: [3] Li, R. J., Lee, E. S.: Fuzzy Approaches to Multicriteria De Novo Programs. Journal of Mathematical Analysis and Applications 153 (1990), 13–20. Zbl 0719.90092, MR 1080121
Reference: [4] Shi, Y.: Studies on Optimum-Path Ratios in De Novo Programming Problems. Computers and Mathematics with Applications 29 (1995), 43–50. MR 1320848, 10.1016/0898-1221(94)00247-I
Reference: [5] Zelený, M.: De Novo Programming. Ekonomicko-matematický obzor 26 (1990), 406–413. MR 1090438
Reference: [6] Zeleny, M.: Multiobjective Optimization, Systems Design and De Novo Programming. In: Zopounidis, C., Pardalos, P. M. (eds.): Handbook of Multicriteria Analysis, Springer, Berlin, 2010.
Reference: [7] Zeleny, M.: Optimal Given System vs. Designing Optimal System: The De Novo Programming Approach. International Journal of General System 17 (1990), 295–307. 10.1080/03081079008935113
Reference: [8] Zhang, Y. M., Huang, G. H., Zhang, X. D.: Inexact de Novo programming for water resources systems planning. European Journal of Operational Research 199 (2009), 531–541. Zbl 1176.90333, MR 2533293, 10.1016/j.ejor.2008.11.019
.

Files

Files Size Format View
ActaOlom_50-2011-2_4.pdf 202.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo