Previous |  Up |  Next

Article

Title: On the Equivalence between Orthogonal Regression and Linear Model with Type-II Constraints (English)
Author: Donevska, Sandra
Author: Fišerová, Eva
Author: Hron, Karel
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 50
Issue: 2
Year: 2011
Pages: 19-27
Summary lang: English
.
Category: math
.
Summary: Orthogonal regression, also known as the total least squares method, regression with errors-in variables or as a calibration problem, analyzes linear relationship between variables. Comparing to the standard regression, both dependent and explanatory variables account for measurement errors. Through this paper we shortly discuss the orthogonal least squares, the least squares and the maximum likelihood methods for estimation of the orthogonal regression line. We also show that all mentioned approaches lead to the same estimates in a special case. (English)
Keyword: linear regression model with type-II constraints
Keyword: orthogonal regression
Keyword: estimation
MSC: 62F10
MSC: 62J05
idZBL: Zbl 1244.62097
idMR: MR2920705
.
Date available: 2011-12-16T14:43:51Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141750
.
Reference: [1] Anděl, J.: Statistical Methods. Matfyzpress, Praha, 2007, (in Czech).
Reference: [2] Caroll, R. J., Ruppert, D.: The use and misuse of orthogonal regression in linear errors-in-variables models. Am. Stat. 50 (1996), 1–6.
Reference: [3] Casella, G., Berger, R. L.: Statistical Inference. Duxbury Press, Pacific Grove, 2002, (sec. ed.).
Reference: [4] Fišerová, E., Hron, K.: Total least squares solution for compositional data using linear models. Journal of Applied Statistics 37 (2010), 1137–1152. MR 2751926, 10.1080/02664760902914532
Reference: [5] Fišerová, E., Kubáček, L., Kunderová, P.: Linear Statistical Models: Regularity and Singularities. Academia, Praha, 2007.
Reference: [6] Fuller, W. A.: Measurement Error Models. Wiley, New York, 1987. Zbl 0800.62413, MR 0898653
Reference: [7] Hillegers, L. T. M. E.: The estimation of parameters in functional relationship models. Dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands, 1986. MR 0874750
Reference: [8] Jackson, J. D., Dunlevy, J. A.: Orthogonal least squares and the interchangeability of alternative proxy variables in the social sciences. Journal of the Royal Statistical Society Series D (The Statistician) 37, 1 (1988), 7–14.
Reference: [9] Jolicoeur, P.: Interval estimation of the slope of the major axis of a bivariate normal distribution in the case of a small sample. Biometrics 24 (1968), 679–682. 10.2307/2528326
Reference: [10] Kendall, M. G., Stuart, A.: The Advanced Theory of Statistics, Vol. 2. Charles Griffin, London, 1967.
Reference: [11] Kubáček, L., Kubáčková, L.: One of the calibration problems. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 36 (1997), 117–130. MR 1620541
Reference: [12] Markovsky, I., Van Huffel, S.: Overview of total least-squares methods. Signal Processing 87 (2007), 2283–2320. Zbl 1186.94229, 10.1016/j.sigpro.2007.04.004
Reference: [13] Nestares, O., Fleet, D. J., Heeger, D. J.: Likelihood functions and confidence bounds for total-least-squares problems. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’00) 1 (2000), 1523–1530.
Reference: [14] Van Huffel, S., Lemmerling, P.: Total Least Squares and Errors-in-Variables Modelling: Analysis, Algorithms and Applications. Kluwer, Dordrecht, 2002. MR 1951009
Reference: [15] Van Huffel, S., Vandevalle, J.: The Total Least Squares Problem: Computational Aspects and Analysis. SIAM, Philadelphia, 1991. MR 1118607
Reference: [16] Wimmer, G., Witkovský, V.: Univariate linear calibration via replicated errors-in-variables model models. J. Stat. Comput. Simul. 77 (2007), 213–227. MR 2345730, 10.1080/10629360600679433
.

Files

Files Size Format View
ActaOlom_50-2011-2_3.pdf 238.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo