Previous |  Up |  Next

Article

Title: Inequalities between the sum of powers and the exponential of sum of positive and commuting selfadjoint operators (English)
Author: Bendoukha, Berrabah
Author: Bendahmane, Hafida
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 4
Year: 2011
Pages: 257-262
Summary lang: English
.
Category: math
.
Summary: Let ${\mathcal{B}}({\mathcal{H}})$ be the set of all bounded linear operators acting in Hilbert space ${\mathcal{H}}$ and ${\mathcal{B}}^{+}({\mathcal{H}})$ the set of all positive selfadjoint elements of ${\mathcal{B}}({\mathcal{H}})$. The aim of this paper is to prove that for every finite sequence $(A_{i})_{i=1}^{n}$ of selfadjoint, commuting elements of ${\mathcal{B}}^{+}({\mathcal{H}})$ and every natural number $p\ge 1$, the inequality \[ \frac{e^{p}}{p^{p}}\Big (\sum _{i=1}^{n}A_{i}^{p}\Big )\le \exp \Big (\sum _{i=1}^{n}A_{i}\Big )\,, \] holds. (English)
Keyword: commuting operators
Keyword: positive selfadjoint operator
Keyword: spectral representation
MSC: 47A30
MSC: 47B60
idZBL: Zbl 1249.47019
idMR: MR2876948
.
Date available: 2011-12-16T15:13:03Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141774
.
Reference: [1] Akhiezer, N. I., Glasman, I. M.: Theory of linear operators in Hilbert space.Tech. report, Vyshcha Shkola, Kharkov, 1977, English transl. Pitman (APP), 1981. MR 0486990
Reference: [2] Belaidi, B., Farissi, A. El, Latreuch, Z.: Inequalities between sum of the powers and the exponential of sum of nonnegative sequence.RGMIA Research Collection, 11 (1), Article 6, 2008.
Reference: [3] Qi, F.: Inequalities between sum of the squares and the exponential of sum of nonnegative sequence.J. Inequal. Pure Appl. Math. 8 (3) (2007), 1–5, Art. 78. MR 2345933
Reference: [4] Weidman, J.: Linear operators in Hilbert spaces.New York, Springer, 1980. MR 0566954
.

Files

Files Size Format View
ArchMathRetro_047-2011-4_3.pdf 430.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo