Previous |  Up |  Next

Article

Title: Operads for $n$-ary algebras – calculations and conjectures (English)
Author: Markl, Martin
Author: Remm, Elisabeth
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 5
Year: 2011
Pages: 377-387
Summary lang: English
.
Category: math
.
Summary: In [8] we studied Koszulity of a family ${t\mathcal{A}\it ss}^n_d$ of operads depending on a natural number $n \in \mathbb{N}$ and on the degree $d \in \mathbb{Z}$ of the generating operation. While we proved that, for $n \le 7$, the operad ${t\mathcal{A}\it ss}^n_d$ is Koszul if and only if $d$ is even, and while it follows from [4] that ${t\mathcal{A}\it ss}^n_d$ is Koszul for $d$ even and arbitrary $n$, the (non)Koszulity of ${t\mathcal{A}\it ss}^n_d$ for $d$ odd and $n \ge 8$ remains an open problem. In this note we describe some related numerical experiments, and formulate a conjecture suggested by the results of these computations. (English)
Keyword: operad
Keyword: Koszulity
Keyword: minimal model
MSC: 18D50
MSC: 55P48
idZBL: Zbl 1265.18015
idMR: MR2876941
.
Date available: 2011-12-16T15:25:50Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141785
.
Reference: [1] Getzler, E., Jones, J. D. S.: Operads, homotopy algebra, and iterated integrals for double loop spaces.Preprint hep-th/9403055, March 1994.
Reference: [2] Ginzburg, V., Kapranov, M. M.: Koszul duality for operads.Duke Math. J. 76 (1) (1994), 203–272. Zbl 0855.18006, MR 1301191, 10.1215/S0012-7094-94-07608-4
Reference: [3] Hanlon, P., Wachs, M. L.: On Lie $k$-algebras.Adv. Math. 113 (1995), 206–236. Zbl 0844.17001, MR 1337108, 10.1006/aima.1995.1038
Reference: [4] Hoffbeck, E.: A Poincaré–Birkhoff–Witt criterion for Koszul operads.Manuscripta Math. 131 (1–2) (2010), 87–110. Zbl 1207.18009, MR 2574993, 10.1007/s00229-009-0303-2
Reference: [5] Markl, M.: A cohomology theory for $A(m)$-algebras and applications.J. Pure Appl. Algebra 83 (1992), 141–175. Zbl 0801.55004, MR 1191090, 10.1016/0022-4049(92)90160-H
Reference: [6] Markl, M.: Models for operads.Comm. Algebra 24 (4) (1996), 1471–1500. Zbl 0848.18003, MR 1380606, 10.1080/00927879608825647
Reference: [7] Markl, M.: Intrinsic brackets and the ${L_\infty }$-deformation theory of bialgebras.J. Homotopy Relat. Struct. 5 (1) (2010), 177–212. MR 2812919
Reference: [8] Markl, M., Remm, E.: (Non–)Koszulness of operads for n-ary algebras, galgalim and other curiosities.Preprint arXiv:0907.1505.
Reference: [9] Markl, M., Shnider, S., Stasheff, J. D.: Operads in Algebra, Topology and Physics.Math. Surveys Monogr., vol. 96, Amer. Math. Soc., Providence, RI, 2002. Zbl 1017.18001, MR 1898414
.

Files

Files Size Format View
ArchMathRetro_047-2011-5_5.pdf 542.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo