Previous |  Up |  Next

Article

Title: Conformally geodesic mappings satisfying a certain initial condition (English)
Author: Chudá, Hana
Author: Mikeš, Josef
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 5
Year: 2011
Pages: 389-394
Summary lang: English
.
Category: math
.
Summary: In this paper we study conformally geodesic mappings between pseudo-Riemannian manifolds $(M, g)$ and $(\bar{M}, \bar{g})$, i.e. mappings $f\colon M \rightarrow \bar{M}$ satisfying $f = f_1 \circ f_2 \circ f_3$, where $f_1, f_3$ are conformal mappings and $f_2$ is a geodesic mapping. Suppose that the initial condition $f^* \bar{g} = k g$ is satisfied at a point $x_0 \in M$ and that at this point the conformal Weyl tensor does not vanish. We prove that then $f$ is necessarily conformal. (English)
Keyword: conformal mappings
Keyword: geodesic mappings
Keyword: conformally geodesic mappings
MSC: 53B20
MSC: 53B30
MSC: 53C21
idZBL: Zbl 1265.53019
idMR: MR2876942
.
Date available: 2011-12-16T15:26:51Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141786
.
Reference: [1] Aminova, A. V.: Projective transformations of pseudo-Riemannian manifolds.J. Math. Sci. (New York) 113 (3) (2003), 367–470. Zbl 1043.53054, MR 1965077, 10.1023/A:1021041802041
Reference: [2] Chudá, H., Mikeš, J.: On geodesic mappings with certain initial conditions.Acta Math. Acad. Paedagog. Nyházi. 26 (2) (2010), 337–341. Zbl 1240.53029, MR 2754425
Reference: [3] Eisenhart, L. P.: Non-Riemannian Geometry.Amer. Math. Soc. Colloq. Publ. 8, 1990, reprint of the 1927 original. MR 1466961
Reference: [4] Hinterleitner, I.: Special mappings of equidistant spaces.J. Appl. Math. 2 (2008), 31–36.
Reference: [5] Hinterleitner, I.: Selected Special Vector Fields and Mappings in Riemannian Geometry.Ph.D. thesis, VUT Brno, 2009.
Reference: [6] Levi-Civita, T.: Sulle transformationi delle equazioni dinamiche.Ann. Mat. Milano 24 Ser. 2 (1886), 255–300.
Reference: [7] Mikeš, J., Kiosak, V., Vanžurová, A.: Geodesic mappings of manifolds with affine connection.Palacky University Press, Olomouc, 2008. Zbl 1176.53004, MR 2488821
Reference: [8] Mikeš, J., Strambach, K.: Differentiable structures on elementary geometries.Results Math. 53 (1–2) (2009), 153–172. Zbl 1179.51009, MR 2481410, 10.1007/s00025-008-0296-2
Reference: [9] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic mappings and some generalizations.Palacky University Press, Olomouc, 2009. Zbl 1222.53002, MR 2682926
Reference: [10] Petrov, A. Z.: New methods in the general theory of relativity.Nauka, Moscow, 1966. MR 0207365
Reference: [11] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces.Nauka, Moscow, 1979. Zbl 0637.53020, MR 0552022
Reference: [12] Thomas, T. Y.: The differential invariants of generalized spaces.III, Cambridge Univ. Press, 1934. Zbl 0009.08503
Reference: [13] Weyl, H.: Zur Infinitesimalgeometrie. Einordnung der projektiven und der konformen Auffassung.Göttinger Nachrichten (1921), 99–112.
.

Files

Files Size Format View
ArchMathRetro_047-2011-5_6.pdf 426.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo