Title:
|
Conformally geodesic mappings satisfying a certain initial condition (English) |
Author:
|
Chudá, Hana |
Author:
|
Mikeš, Josef |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
47 |
Issue:
|
5 |
Year:
|
2011 |
Pages:
|
389-394 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study conformally geodesic mappings between pseudo-Riemannian manifolds $(M, g)$ and $(\bar{M}, \bar{g})$, i.e. mappings $f\colon M \rightarrow \bar{M}$ satisfying $f = f_1 \circ f_2 \circ f_3$, where $f_1, f_3$ are conformal mappings and $f_2$ is a geodesic mapping. Suppose that the initial condition $f^* \bar{g} = k g$ is satisfied at a point $x_0 \in M$ and that at this point the conformal Weyl tensor does not vanish. We prove that then $f$ is necessarily conformal. (English) |
Keyword:
|
conformal mappings |
Keyword:
|
geodesic mappings |
Keyword:
|
conformally geodesic mappings |
MSC:
|
53B20 |
MSC:
|
53B30 |
MSC:
|
53C21 |
idZBL:
|
Zbl 1265.53019 |
idMR:
|
MR2876942 |
. |
Date available:
|
2011-12-16T15:26:51Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141786 |
. |
Reference:
|
[1] Aminova, A. V.: Projective transformations of pseudo-Riemannian manifolds.J. Math. Sci. (New York) 113 (3) (2003), 367–470. Zbl 1043.53054, MR 1965077, 10.1023/A:1021041802041 |
Reference:
|
[2] Chudá, H., Mikeš, J.: On geodesic mappings with certain initial conditions.Acta Math. Acad. Paedagog. Nyházi. 26 (2) (2010), 337–341. Zbl 1240.53029, MR 2754425 |
Reference:
|
[3] Eisenhart, L. P.: Non-Riemannian Geometry.Amer. Math. Soc. Colloq. Publ. 8, 1990, reprint of the 1927 original. MR 1466961 |
Reference:
|
[4] Hinterleitner, I.: Special mappings of equidistant spaces.J. Appl. Math. 2 (2008), 31–36. |
Reference:
|
[5] Hinterleitner, I.: Selected Special Vector Fields and Mappings in Riemannian Geometry.Ph.D. thesis, VUT Brno, 2009. |
Reference:
|
[6] Levi-Civita, T.: Sulle transformationi delle equazioni dinamiche.Ann. Mat. Milano 24 Ser. 2 (1886), 255–300. |
Reference:
|
[7] Mikeš, J., Kiosak, V., Vanžurová, A.: Geodesic mappings of manifolds with affine connection.Palacky University Press, Olomouc, 2008. Zbl 1176.53004, MR 2488821 |
Reference:
|
[8] Mikeš, J., Strambach, K.: Differentiable structures on elementary geometries.Results Math. 53 (1–2) (2009), 153–172. Zbl 1179.51009, MR 2481410, 10.1007/s00025-008-0296-2 |
Reference:
|
[9] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic mappings and some generalizations.Palacky University Press, Olomouc, 2009. Zbl 1222.53002, MR 2682926 |
Reference:
|
[10] Petrov, A. Z.: New methods in the general theory of relativity.Nauka, Moscow, 1966. MR 0207365 |
Reference:
|
[11] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces.Nauka, Moscow, 1979. Zbl 0637.53020, MR 0552022 |
Reference:
|
[12] Thomas, T. Y.: The differential invariants of generalized spaces.III, Cambridge Univ. Press, 1934. Zbl 0009.08503 |
Reference:
|
[13] Weyl, H.: Zur Infinitesimalgeometrie. Einordnung der projektiven und der konformen Auffassung.Göttinger Nachrichten (1921), 99–112. |
. |