Previous |  Up |  Next

Article

Title: Second variational derivative of local variational problems and conservation laws (English)
Author: Palese, Marcella
Author: Winterroth, Ekkehart
Author: Garrone, E.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 5
Year: 2011
Pages: 395-403
Summary lang: English
.
Category: math
.
Summary: We consider cohomology defined by a system of local Lagrangian and investigate under which conditions the variational Lie derivative of associated local currents is a system of conserved currents. The answer to such a question involves Jacobi equations for the local system. Furthermore, we recall that it was shown by Krupka et al. that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form; we remark that the corresponding local system of Euler–Lagrange forms is variationally equivalent to a global one. (English)
Keyword: fibered manifold
Keyword: jet space
Keyword: Lagrangian formalism
Keyword: variational sequence
Keyword: second variational derivative
Keyword: cohomology
Keyword: symmetry
Keyword: conservation law
MSC: 55N30
MSC: 55R10
MSC: 58A12
MSC: 58A20
MSC: 58E30
MSC: 70S10
idZBL: Zbl 1265.58008
idMR: MR2876943
.
Date available: 2011-12-16T15:28:23Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141787
.
Reference: [1] Allemandi, G., Francaviglia, M., Raiteri, M.: Covariant charges in Chern-Simons $AdS3$ gravity.Classical Quantum Gravity 20 (3) (2003), 483–506. MR 1957170, 10.1088/0264-9381/20/3/307
Reference: [2] Anderson, I. M., Duchamp, T.: On the existence of global variational principles.Amer. Math. J. 102 (1980), 781–868. Zbl 0454.58021, MR 0590637, 10.2307/2374195
Reference: [3] Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M.: Conservation laws for non-global Lagrangians.Univ. Iagel. Acta Math. 41 (2003), 319–331. Zbl 1060.70034, MR 2084774
Reference: [4] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms.J. Math. Phys. 46 (5) (2005), 15, 052903. Zbl 1110.58011, MR 2143003, 10.1063/1.1901323
Reference: [5] Dedecker, P., Tulczyjew, W. M.: Spectral sequences and the inverse problem of the calculus of variations.Lecture Notes in Math., vol. 836, Springer–Verlag, 1980, pp. 498–503. Zbl 0482.49027, MR 0607719
Reference: [6] Eck, D. J.: Gauge-natural bundles and generalized gauge theories.Mem. Amer. Math. Soc. 247 (1981), 1–48. Zbl 0493.53052, MR 0632164
Reference: [7] Ferraris, M., Francaviglia, M., Raiteri, M.: Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation).Classical Quantum Gravity 20 (2003), 4043–4066. MR 2017333, 10.1088/0264-9381/20/18/312
Reference: [8] Ferraris, M., Palese, M., Winterroth, E.: Local variational problems and conservation laws.Differential Geom. Appl. 29 (2011), S80–S85. Zbl 1233.58002, MR 2832003, 10.1016/j.difgeo.2011.04.011
Reference: [9] Francaviglia, M., Palese, M.: Second order variations in variational sequences.Steps in differential geometry. Proceedings of the colloquium on differential geometry (Kozma, L. et al., ed.), Univ. Debrecen, Institute of Mathematics and Informatics, 2001, Debrecen, Hungary, July 25-30, 2000, pp. 119–130. Zbl 0977.58019, MR 1859293
Reference: [10] Francaviglia, M., Palese, M., Vitolo, R.: Symmetries in finite order variational sequences.Czechoslovak Math. J. 52 (127) (1) (2002), 197–213. Zbl 1006.58014, MR 1885465, 10.1023/A:1021735824163
Reference: [11] Francaviglia, M., Palese, M., Vitolo, R.: The Hessian and Jacobi morphisms for higher order calculus of variations.Differential Geom. Appl. 22 (1) (2005), 105–120. Zbl 1065.58010, MR 2106379, 10.1016/j.difgeo.2004.07.008
Reference: [12] Krupka, D.: Some Geometric Aspects of Variational Problems in Fibred Manifolds.Folia Fac. Sci. Natur. UJEP Brunensis, vol. 14, 1973, pp. 1–65.
Reference: [13] Krupka, D.: Variational Sequences on Finite Order Jet Spaces.Proc. Differential Geom. Appl. (Janyška, J., Krupka, D., eds.), World Sci. Singapore, 1990, pp. 236–254. Zbl 0813.58014, MR 1062026
Reference: [14] Krupka, D., Krupková, O., Prince, G., Sarlet, W.: Contact symmetries of the Helmholtz form.Differential Geom. Appl. 25 (5) (2007), 518–542. MR 2351428, 10.1016/j.difgeo.2007.06.003
Reference: [15] Palese, M., Winterroth, E.: Covariant gauge-natural conservation laws.Rep. Math. Phys. 54 (3) (2004), 349–364. Zbl 1066.58009, MR 2115744, 10.1016/S0034-4877(04)80024-7
Reference: [16] Palese, M., Winterroth, E.: Global generalized Bianchi identities for invariant variational problems on Gauge-natural bundles.Arch. Math. (Brno) 41 (3) (2005), 289–310. Zbl 1112.58005, MR 2188385
Reference: [17] Palese, M., Winterroth, E.: Variational Lie derivative and cohomology classes.AIP Conf. Proc. 1360 (2011), 106–112.
Reference: [18] Sardanashvily, G.: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian.arXiv:math-ph/0302012; see also Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Noether's second theorem in a general setting. Reducible gauge theories, J. Phys. A38 (2005), 5329–5344.
Reference: [19] Takens, F.: A global version of the inverse problem of the calculus of variations.J. Differential Geom. 14 (1979), 543–562. Zbl 0463.58015, MR 0600611
Reference: [20] Tulczyjew, W. M.: The Lagrange complex.Bull. Soc. Math. France 105 (1977), 419–431. Zbl 0408.58020, MR 0494272
Reference: [21] Vinogradov, A. M.: On the algebro–geometric foundations of Lagrangian field theory.Soviet Math. Dokl. 18 (1977), 1200–1204. Zbl 0403.58005, MR 0501142
.

Files

Files Size Format View
ArchMathRetro_047-2011-5_7.pdf 481.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo