Previous |  Up |  Next

Article

Title: Hausdorff dimension of the maximal run-length in dyadic expansion (English)
Author: Zou, Ruibiao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 881-888
Summary lang: English
.
Category: math
.
Summary: For any $x\in [0,1)$, let $x=[\epsilon _1,\epsilon _2,\cdots ,]$ be its dyadic expansion. Call $r_n(x):=\max \{j\geq 1\colon \epsilon _{i+1}=\cdots =\epsilon _{i+j}=1$, $0\leq i\leq n-j\}$ the $n$-th maximal run-length function of $x$. P. Erdös and A. Rényi showed that $\lim _{n\to \infty }{r_n(x)}/{\log _2 n}=1$ almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than $\log _2 n$, is quantified by their Hausdorff dimension. (English)
Keyword: run-length function
Keyword: Hausdorff dimension
Keyword: dyadic expansion
MSC: 11K55
MSC: 28A78
MSC: 28A80
idZBL: Zbl 1249.11085
idMR: MR2886243
DOI: 10.1007/s10587-011-0055-5
.
Date available: 2011-12-16T15:33:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141793
.
Reference: [1] Arratia, R., Gordon, L., Waterman, M. S.: The Erdös-Rényi law in distribution, for coin tossing and sequence matching.Ann. Stat. 18 (1990), 539-570. Zbl 0712.92016, MR 1056326, 10.1214/aos/1176347615
Reference: [2] Benjamini, I., Häggström, O., Peres, Y., Steif, J. E.: Which properties of a random sequence are dynamically sensitive? Ann.Probab. 31 (2003), 1-34. MR 1959784, 10.1214/aop/1046294302
Reference: [3] Billingsley, P.: Ergodic Theory and Information,.Wiley Series in Probability and Mathematical Statistics. New York: John Wiley and Sons (1965). Zbl 0141.16702, MR 0192027
Reference: [4] Khoshnevisan, D., Levin, D. A., Méndez-Hernández, P. J.: On dynamical Gaussian random walks.Ann. Probab. 33 (2005), 1452-1478. MR 2150195, 10.1214/009117904000001044
Reference: [5] Khoshnevisan, D., Levin, D. A., Méndez-Hernández, P. J.: Exceptional times and invariance for dynamical random walks.Probab. Theory Relat. Fields. 134 (2006), 383-416. MR 2226886, 10.1007/s00440-005-0435-6
Reference: [6] Khoshnevisan, D., Levin, D. A.: On dynamical bit sequences.arXiv:0706.1520v2.
Reference: [7] Ma, J.-H., Wen, S.-Y., Wen, Z.-Y.: Egoroff's theorem and maximal run length.Monatsh. Math. 151 (2007), 287-292. Zbl 1170.28001, MR 2329089, 10.1007/s00605-007-0455-7
Reference: [8] Révész, P.: Random Walk in Random and Non-Random Enviroments.Singapore. World Scientific (1990). MR 1082348
.

Files

Files Size Format View
CzechMathJ_61-2011-4_2.pdf 243.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo