Title:
|
Hausdorff dimension of the maximal run-length in dyadic expansion (English) |
Author:
|
Zou, Ruibiao |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
881-888 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For any $x\in [0,1)$, let $x=[\epsilon _1,\epsilon _2,\cdots ,]$ be its dyadic expansion. Call $r_n(x):=\max \{j\geq 1\colon \epsilon _{i+1}=\cdots =\epsilon _{i+j}=1$, $0\leq i\leq n-j\}$ the $n$-th maximal run-length function of $x$. P. Erdös and A. Rényi showed that $\lim _{n\to \infty }{r_n(x)}/{\log _2 n}=1$ almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than $\log _2 n$, is quantified by their Hausdorff dimension. (English) |
Keyword:
|
run-length function |
Keyword:
|
Hausdorff dimension |
Keyword:
|
dyadic expansion |
MSC:
|
11K55 |
MSC:
|
28A78 |
MSC:
|
28A80 |
idZBL:
|
Zbl 1249.11085 |
idMR:
|
MR2886243 |
DOI:
|
10.1007/s10587-011-0055-5 |
. |
Date available:
|
2011-12-16T15:33:47Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141793 |
. |
Reference:
|
[1] Arratia, R., Gordon, L., Waterman, M. S.: The Erdös-Rényi law in distribution, for coin tossing and sequence matching.Ann. Stat. 18 (1990), 539-570. Zbl 0712.92016, MR 1056326, 10.1214/aos/1176347615 |
Reference:
|
[2] Benjamini, I., Häggström, O., Peres, Y., Steif, J. E.: Which properties of a random sequence are dynamically sensitive? Ann.Probab. 31 (2003), 1-34. MR 1959784, 10.1214/aop/1046294302 |
Reference:
|
[3] Billingsley, P.: Ergodic Theory and Information,.Wiley Series in Probability and Mathematical Statistics. New York: John Wiley and Sons (1965). Zbl 0141.16702, MR 0192027 |
Reference:
|
[4] Khoshnevisan, D., Levin, D. A., Méndez-Hernández, P. J.: On dynamical Gaussian random walks.Ann. Probab. 33 (2005), 1452-1478. MR 2150195, 10.1214/009117904000001044 |
Reference:
|
[5] Khoshnevisan, D., Levin, D. A., Méndez-Hernández, P. J.: Exceptional times and invariance for dynamical random walks.Probab. Theory Relat. Fields. 134 (2006), 383-416. MR 2226886, 10.1007/s00440-005-0435-6 |
Reference:
|
[6] Khoshnevisan, D., Levin, D. A.: On dynamical bit sequences.arXiv:0706.1520v2. |
Reference:
|
[7] Ma, J.-H., Wen, S.-Y., Wen, Z.-Y.: Egoroff's theorem and maximal run length.Monatsh. Math. 151 (2007), 287-292. Zbl 1170.28001, MR 2329089, 10.1007/s00605-007-0455-7 |
Reference:
|
[8] Révész, P.: Random Walk in Random and Non-Random Enviroments.Singapore. World Scientific (1990). MR 1082348 |
. |