Previous |  Up |  Next

Article

Title: Order bounded orthosymmetric bilinear operator (English)
Author: Chil, Elmiloud
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 873-880
Summary lang: English
.
Category: math
.
Summary: It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator $b\colon E\times E\rightarrow F$ where $E$ and $F$ are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost $f$-algebras. (English)
Keyword: vector lattice
Keyword: positive bilinear operator
Keyword: orthosymmetric bilinear operator
Keyword: lattice bimorphism
MSC: 06F25
MSC: 46A40
MSC: 47A65
idZBL: Zbl 1249.06048
idMR: MR2886242
DOI: 10.1007/s10587-011-0052-8
.
Date available: 2011-12-16T15:32:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141791
.
Reference: [1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Springer Berlin (2006). Zbl 1098.47001, MR 2262133
Reference: [2] Basly, M., Triki, A.: FF-algèbres Archimédiennes réticulées.University of Tunis, Preprint (1988). MR 0964828
Reference: [3] Bernau, S. J., Huijsmans, C. B.: Almost $f$-algebras and $d$-algebras.Math. Proc. Camb. Philos. Soc. 107 (1990), 287-308. Zbl 0707.06009, MR 1027782, 10.1017/S0305004100068560
Reference: [4] Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Anneaux Réticulés. Lecture Notes in Mathematics Vol. 608.Springer Berlin-Heidelberg-New York (1977). MR 0552653
Reference: [5] Birkhoff, G., Pierce, R. S.: Lattice-ordered rings.Anais Acad. Brasil. Ci. 28 (1956), 41-69. Zbl 0070.26602, MR 0080099
Reference: [6] Bu, Q., Buskes, G., Kusraev, A. G.: Bilinear Maps on Product of Vector Lattices: A Survey. Positivity. Trends in Mathematics.Birkhäuser Basel (2007), 97-126. MR 2382216
Reference: [7] Buskes, G., Pagter, B. de, Rooij, A. van: Functional calculus in Riesz spaces.Indag. Math. New Ser. 4 (1991), 423-436. MR 1149692, 10.1016/0019-3577(91)90028-6
Reference: [8] Buskes, G., Kusraev, A. G.: Representation and extension of orthoregular bilinear operators.Vladikavkaz. Math. Zh. 9 (2007), 16-29. MR 2434620
Reference: [9] Buskes, G., Rooij, A. van: Small Riesz spaces.Math. Proc. Camb. Philos. Soc. 105 (1989), 523-536. MR 0985689, 10.1017/S0305004100077902
Reference: [10] Buskes, G., Rooij, A. van: Almost $f$-algebras: Commutativity and the Cauchy-Schwarz inequality.Positivity 4 (2000), 227-231. MR 1797125, 10.1023/A:1009826510957
Reference: [11] Buskes, G., Rooij, A. van: Squares of Riesz spaces.Rocky Mt. J. Math. 31 (2001), 45-56. MR 1821367, 10.1216/rmjm/1008959667
Reference: [12] Buskes, G., Rooij, A. van: Bounded variation and tensor products of Banach lattices.Positivity 7 (2003), 47-59. MR 2028366, 10.1023/A:1025898718431
Reference: [13] Grobler, J. J., Labuschagne, C. C. A.: The tensor product of Archimedean ordered vector spaces.Math. Proc. Camb. Philos. Soc. 104 (1988), 331-345. Zbl 0663.46006, MR 0948918, 10.1017/S0305004100065506
Reference: [14] Huijsmans, C. B., Pagter, B. de: Subalgebras and Riesz subspaces of an $f$-algebra.Proc. Lond. Math. Soc. III. Ser. 48 (1984), 161-174. Zbl 0534.46010, MR 0721777, 10.1112/plms/s3-48.1.161
Reference: [15] Luxemburg, W. A. J., Zaanen, A. C.: Riesz spaces I.North-Holland Mathematical Library Amsterdam-London (1971). MR 0511676
Reference: [16] Nakano, H.: Product spaces of semi-ordered linear spaces.J. Fac. Sci., Hakkaidô Univ. Ser. I. 12 (1953), 163-210. Zbl 0051.33901, MR 0062961
Reference: [17] Zaanen, A. C.: Riesz spaces II.North-Holland Mathematical Library Amsterdam-New York-Oxford (1983). Zbl 0519.46001, MR 0704021
.

Files

Files Size Format View
CzechMathJ_61-2011-4_1.pdf 234.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo