Title:
|
Order bounded orthosymmetric bilinear operator (English) |
Author:
|
Chil, Elmiloud |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
873-880 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator $b\colon E\times E\rightarrow F$ where $E$ and $F$ are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost $f$-algebras. (English) |
Keyword:
|
vector lattice |
Keyword:
|
positive bilinear operator |
Keyword:
|
orthosymmetric bilinear operator |
Keyword:
|
lattice bimorphism |
MSC:
|
06F25 |
MSC:
|
46A40 |
MSC:
|
47A65 |
idZBL:
|
Zbl 1249.06048 |
idMR:
|
MR2886242 |
DOI:
|
10.1007/s10587-011-0052-8 |
. |
Date available:
|
2011-12-16T15:32:58Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141791 |
. |
Reference:
|
[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Springer Berlin (2006). Zbl 1098.47001, MR 2262133 |
Reference:
|
[2] Basly, M., Triki, A.: FF-algèbres Archimédiennes réticulées.University of Tunis, Preprint (1988). MR 0964828 |
Reference:
|
[3] Bernau, S. J., Huijsmans, C. B.: Almost $f$-algebras and $d$-algebras.Math. Proc. Camb. Philos. Soc. 107 (1990), 287-308. Zbl 0707.06009, MR 1027782, 10.1017/S0305004100068560 |
Reference:
|
[4] Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Anneaux Réticulés. Lecture Notes in Mathematics Vol. 608.Springer Berlin-Heidelberg-New York (1977). MR 0552653 |
Reference:
|
[5] Birkhoff, G., Pierce, R. S.: Lattice-ordered rings.Anais Acad. Brasil. Ci. 28 (1956), 41-69. Zbl 0070.26602, MR 0080099 |
Reference:
|
[6] Bu, Q., Buskes, G., Kusraev, A. G.: Bilinear Maps on Product of Vector Lattices: A Survey. Positivity. Trends in Mathematics.Birkhäuser Basel (2007), 97-126. MR 2382216 |
Reference:
|
[7] Buskes, G., Pagter, B. de, Rooij, A. van: Functional calculus in Riesz spaces.Indag. Math. New Ser. 4 (1991), 423-436. MR 1149692, 10.1016/0019-3577(91)90028-6 |
Reference:
|
[8] Buskes, G., Kusraev, A. G.: Representation and extension of orthoregular bilinear operators.Vladikavkaz. Math. Zh. 9 (2007), 16-29. MR 2434620 |
Reference:
|
[9] Buskes, G., Rooij, A. van: Small Riesz spaces.Math. Proc. Camb. Philos. Soc. 105 (1989), 523-536. MR 0985689, 10.1017/S0305004100077902 |
Reference:
|
[10] Buskes, G., Rooij, A. van: Almost $f$-algebras: Commutativity and the Cauchy-Schwarz inequality.Positivity 4 (2000), 227-231. MR 1797125, 10.1023/A:1009826510957 |
Reference:
|
[11] Buskes, G., Rooij, A. van: Squares of Riesz spaces.Rocky Mt. J. Math. 31 (2001), 45-56. MR 1821367, 10.1216/rmjm/1008959667 |
Reference:
|
[12] Buskes, G., Rooij, A. van: Bounded variation and tensor products of Banach lattices.Positivity 7 (2003), 47-59. MR 2028366, 10.1023/A:1025898718431 |
Reference:
|
[13] Grobler, J. J., Labuschagne, C. C. A.: The tensor product of Archimedean ordered vector spaces.Math. Proc. Camb. Philos. Soc. 104 (1988), 331-345. Zbl 0663.46006, MR 0948918, 10.1017/S0305004100065506 |
Reference:
|
[14] Huijsmans, C. B., Pagter, B. de: Subalgebras and Riesz subspaces of an $f$-algebra.Proc. Lond. Math. Soc. III. Ser. 48 (1984), 161-174. Zbl 0534.46010, MR 0721777, 10.1112/plms/s3-48.1.161 |
Reference:
|
[15] Luxemburg, W. A. J., Zaanen, A. C.: Riesz spaces I.North-Holland Mathematical Library Amsterdam-London (1971). MR 0511676 |
Reference:
|
[16] Nakano, H.: Product spaces of semi-ordered linear spaces.J. Fac. Sci., Hakkaidô Univ. Ser. I. 12 (1953), 163-210. Zbl 0051.33901, MR 0062961 |
Reference:
|
[17] Zaanen, A. C.: Riesz spaces II.North-Holland Mathematical Library Amsterdam-New York-Oxford (1983). Zbl 0519.46001, MR 0704021 |
. |