| Title:
|
On Lehmer's problem and Dedekind sums (English) |
| Author:
|
Pan, Xiaowei |
| Author:
|
Zhang, Wenpeng |
| Language:
|
English |
| Journal:
|
Czechoslovak Mathematical Journal |
| ISSN:
|
0011-4642 (print) |
| ISSN:
|
1572-9141 (online) |
| Volume:
|
61 |
| Issue:
|
4 |
| Year:
|
2011 |
| Pages:
|
909-916 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
Let $p$ be an odd prime and $c$ a fixed integer with $(c, p)=1$. For each integer $a$ with $1\le a \leq p-1$, it is clear that there exists one and only one $b$ with $0\leq b \leq p-1$ such that $ab \equiv c $ (mod $p$). Let $N(c, p)$ denote the number of all solutions of the congruence equation $ab \equiv c$ (mod $p$) for $1 \le a$, $b \leq p-1$ in which $a$ and $\overline {b}$ are of opposite parity, where $\overline {b}$ is defined by the congruence equation $b\overline {b}\equiv 1\pmod p$. The main purpose of this paper is to use the properties of Dedekind sums and the mean value theorem for Dirichlet $L$-functions to study the hybrid mean value problem involving $N(c,p)-\frac {1}{2}\phi (p)$ and the Dedekind sums $S(c,p)$, and to establish a sharp asymptotic formula for it. (English) |
| Keyword:
|
Lehmer's problem |
| Keyword:
|
error term |
| Keyword:
|
Dedekind sums |
| Keyword:
|
hybrid mean value |
| Keyword:
|
asymptotic formula |
| MSC:
|
11F20 |
| MSC:
|
11L40 |
| MSC:
|
11M20 |
| idZBL:
|
Zbl 1249.11090 |
| idMR:
|
MR2886246 |
| DOI:
|
10.1007/s10587-011-0058-2 |
| . |
| Date available:
|
2011-12-16T15:36:18Z |
| Last updated:
|
2020-07-03 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141796 |
| . |
| Reference:
|
[1] Apostol, T. M.: Introduction to Analytic Number Theory.Upgraduate Texts in Mathematics, Springer-Verlag, New York (1976). Zbl 0335.10001, MR 0434929 |
| Reference:
|
[2] Carlitz, L.: The reciprocity theorem for Dedekind sums.Pac. J. Math. 3 (1953), 523-527. Zbl 0057.03703, MR 0056020, 10.2140/pjm.1953.3.523 |
| Reference:
|
[3] Conrey, J. B., Fransen, E., Klein, R., Scott, C.: Mean values of Dedekind sums.J. Number Theory 56 (1996), 214-226. Zbl 0851.11028, MR 1373548, 10.1006/jnth.1996.0014 |
| Reference:
|
[4] Guy, R. K.: Unsolved Problems in Number Theory (Second Edition).Unsolved Problems in Intuitive Mathematics 1, Springer-Verlag, New York (1994). MR 1299330 |
| Reference:
|
[5] Jia, C. H.: On the mean value of Dedekind sums.J. Number Theory 87 (2001), 173-188. Zbl 0976.11044, MR 1824141, 10.1006/jnth.2000.2580 |
| Reference:
|
[6] Xu, Z. F., Zhang, W. P.: Dirichlet Characters and Their Applications.Chinese Science Press, Beijing (2008). |
| Reference:
|
[7] Xu, Z. F., Zhang, W. P.: On a problem of D. H. Lehmer over short intervals.J. Math. Anal. Appl. 320 (2006), 756-770. Zbl 1098.11050, MR 2225991, 10.1016/j.jmaa.2005.07.054 |
| Reference:
|
[8] Zhang, W. P.: A note on the mean square value of the Dedekind sums.Acta Math. Hung. 86 (2000), 275-289. Zbl 0963.11049, MR 1756252, 10.1023/A:1006724724840 |
| Reference:
|
[9] Zhang, W. P.: A problem of D. H. Lehmer and its mean square value formula.Jap. J. Math. 29 (2003), 109-116. Zbl 1127.11338, MR 1986866 |
| Reference:
|
[10] Zhang, W. P.: On a problem of D. H. Lehmer and its generalization.Compos. Math. 86 (1993), 307-316. Zbl 0783.11003, MR 1219630 |
| Reference:
|
[11] Zhang, W. P.: On the mean values of Dedekind sums.J. Théor. Nombres Bordx. 8 (1996), 429-442. Zbl 0871.11033, MR 1438480, 10.5802/jtnb.179 |
| . |