Previous |  Up |  Next

Article

Title: On Lehmer's problem and Dedekind sums (English)
Author: Pan, Xiaowei
Author: Zhang, Wenpeng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 909-916
Summary lang: English
.
Category: math
.
Summary: Let $p$ be an odd prime and $c$ a fixed integer with $(c, p)=1$. For each integer $a$ with $1\le a \leq p-1$, it is clear that there exists one and only one $b$ with $0\leq b \leq p-1$ such that $ab \equiv c $ (mod $p$). Let $N(c, p)$ denote the number of all solutions of the congruence equation $ab \equiv c$ (mod $p$) for $1 \le a$, $b \leq p-1$ in which $a$ and $\overline {b}$ are of opposite parity, where $\overline {b}$ is defined by the congruence equation $b\overline {b}\equiv 1\pmod p$. The main purpose of this paper is to use the properties of Dedekind sums and the mean value theorem for Dirichlet $L$-functions to study the hybrid mean value problem involving $N(c,p)-\frac {1}{2}\phi (p)$ and the Dedekind sums $S(c,p)$, and to establish a sharp asymptotic formula for it. (English)
Keyword: Lehmer's problem
Keyword: error term
Keyword: Dedekind sums
Keyword: hybrid mean value
Keyword: asymptotic formula
MSC: 11F20
MSC: 11L40
MSC: 11M20
idZBL: Zbl 1249.11090
idMR: MR2886246
DOI: 10.1007/s10587-011-0058-2
.
Date available: 2011-12-16T15:36:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141796
.
Reference: [1] Apostol, T. M.: Introduction to Analytic Number Theory.Upgraduate Texts in Mathematics, Springer-Verlag, New York (1976). Zbl 0335.10001, MR 0434929
Reference: [2] Carlitz, L.: The reciprocity theorem for Dedekind sums.Pac. J. Math. 3 (1953), 523-527. Zbl 0057.03703, MR 0056020, 10.2140/pjm.1953.3.523
Reference: [3] Conrey, J. B., Fransen, E., Klein, R., Scott, C.: Mean values of Dedekind sums.J. Number Theory 56 (1996), 214-226. Zbl 0851.11028, MR 1373548, 10.1006/jnth.1996.0014
Reference: [4] Guy, R. K.: Unsolved Problems in Number Theory (Second Edition).Unsolved Problems in Intuitive Mathematics 1, Springer-Verlag, New York (1994). MR 1299330
Reference: [5] Jia, C. H.: On the mean value of Dedekind sums.J. Number Theory 87 (2001), 173-188. Zbl 0976.11044, MR 1824141, 10.1006/jnth.2000.2580
Reference: [6] Xu, Z. F., Zhang, W. P.: Dirichlet Characters and Their Applications.Chinese Science Press, Beijing (2008).
Reference: [7] Xu, Z. F., Zhang, W. P.: On a problem of D. H. Lehmer over short intervals.J. Math. Anal. Appl. 320 (2006), 756-770. Zbl 1098.11050, MR 2225991, 10.1016/j.jmaa.2005.07.054
Reference: [8] Zhang, W. P.: A note on the mean square value of the Dedekind sums.Acta Math. Hung. 86 (2000), 275-289. Zbl 0963.11049, MR 1756252, 10.1023/A:1006724724840
Reference: [9] Zhang, W. P.: A problem of D. H. Lehmer and its mean square value formula.Jap. J. Math. 29 (2003), 109-116. Zbl 1127.11338, MR 1986866
Reference: [10] Zhang, W. P.: On a problem of D. H. Lehmer and its generalization.Compos. Math. 86 (1993), 307-316. Zbl 0783.11003, MR 1219630
Reference: [11] Zhang, W. P.: On the mean values of Dedekind sums.J. Théor. Nombres Bordx. 8 (1996), 429-442. Zbl 0871.11033, MR 1438480, 10.5802/jtnb.179
.

Files

Files Size Format View
CzechMathJ_61-2011-4_5.pdf 229.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo