Previous |  Up |  Next

Article

Title: Some characterizations of weakly compact operator on Banach lattices (English)
Author: Aqzzouz, Belmesnaoui
Author: Bouras, Khalid
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 901-908
Summary lang: English
.
Category: math
.
Summary: We establish necessary and sufficient conditions under which each operator between Banach lattices is weakly compact and we give some consequences. (English)
Keyword: weakly compact operator
Keyword: order continuous norm
Keyword: KB-space
MSC: 46A40
MSC: 46B40
MSC: 46B42
idZBL: Zbl 1249.46013
idMR: MR2886245
DOI: 10.1007/s10587-011-0057-3
.
Date available: 2011-12-16T15:35:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141795
.
Reference: [1] Aliprantis, Ch. D., Burkinshaw, O.: Positive Operators.Reprint of the 1985 original. Springer, Berlin (2006). Zbl 1098.47001, MR 2262133
Reference: [2] Aqzzouz, B., Nouira, R., Zraoula, L.: About positive Dunford-Pettis operators on Banach lattices.J. Math. Anal. Appl. 324 (2006), 49-59. Zbl 1112.47028, MR 2262455, 10.1016/j.jmaa.2005.10.083
Reference: [3] Aqzzouz, B., Elbour, A.: On the weak compactness of b-weakly compact operators.Positivity 14 (2010), 75-81. Zbl 1198.47034, MR 2596465, 10.1007/s11117-009-0006-7
Reference: [4] Aqzzouz, B., Elbour, A., Hmichane, J.: Some properties of the class of positive Dunford-Pettis operators.J. Math. Anal. Appl. 354 (2009), 295-300. Zbl 1167.47033, MR 2510440, 10.1016/j.jmaa.2008.12.063
Reference: [5] Schaefer, H. H.: Banach Lattices and Positive Operators.Die Grundlehren der mathematischen Wissenschaften 215, Springer-Verlag, Berlin and New York (1974). Zbl 0296.47023, MR 0423039
Reference: [6] Meyer-Nieberg, P.: Banach lattices.Universitext. Springer-Verlag, Berlin (1991). Zbl 0743.46015, MR 1128093
Reference: [7] Wickstead, A. W.: Converses for the Dodds-Fremlin and Kalton-Saab theorems.Math. Proc. Camb. Philos. Soc. 120 (1996), 175-179. Zbl 0872.47018, MR 1373356, 10.1017/S0305004100074752
Reference: [8] Wnuk, W.: Some characterizations of Banach lattices with the Schur property.Congress on Functional Analysis (Madrid, 1988). Rev. Mat. Univ. Complutense Madr. {\it 2}, No. Suppl., (1989), 217-224. Zbl 0717.46018, MR 1057221
Reference: [9] Zaanen, A. C.: Riesz Spaces II.North-Holland Mathematical Library 30, Amsterdam-New York-Oxford, North-Holland Publishing Company (1983). Zbl 0519.46001, MR 0704021
.

Files

Files Size Format View
CzechMathJ_61-2011-4_4.pdf 225.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo